EM78 Series
Microcontrollers

INTEGRATED
DEVELOPMENT

ENVIRONMENT

USER'S GUIDE

Doc. Version 1.1

(Applicable to eUIDE Version 1.0 & later)

ELAN MICROELECTRONICS CORP.
May 2010

Trademark Acknowledgments

IBM is a registered trademark and PS/2 is a trademark of IBM.
Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo % are trademarks of ELAN Microelectronics Corporation.

Copyright © 2009 ~ 2010 by ELAN Microelectronics Corporation
All Rights Reserved

Printed in Taiwan

The contents of this User’s Guide (publication) are subject to change without further notice. ELAN Microelec-
tronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this publication. ELAN
Microelectronics makes no commitment to update, or to keep current the information and material contained in
this publication. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or
other inaccuracies in the information or material contained in this publication. ELAN Microelectronics shall not
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information
or material.

The software (eUIDE) described in this publication is furnished under a license or nondisclosure agreement, and
may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of
ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters: Hong Kong: USA:
No. 12, Innovation 1* Road Elan (HK) Microelectronics Elan Information
Hsinchu Science Park Corporation, Ltd. Technology Group (U.S.A)
Hsinchu, TATWAN 30076 Flat A, 19F., World Tech Centre 95 PO Box 601
Tel: +886 3 563-9977 How Ming Street, Kwun Tong Cupertino, CA 95015
Fax: +886 3 563-9966 Kowloon, HONG KONG U.S.A.
webmaster@emc.com.tw Tel: +852 2723-3376 Tel: +1 408 366-8225
http://www.emc.com.tw Fax:+852 2723-7780 Fax:+1 408 366-8225
Shenzhen: Shanghai:
Elan Microelectronics Elan Microelectronics
Shenzhen, Ltd. Shanghai, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I #34, First FL, ond Bldg.,
Shenzhen Hi-tech Industrial Park Lane 122, Chunxiao Rd.

(South Area), Shenzhen Zhangjiang Hi-Tech Park
CHINA 518057 Shanghai, CHINA 201203
Tel: +86 755 2601-0565 Tel: +86 21 5080-3866
Fax: +86 755 2601-0500 Fax: +86 21 5080-4600

elan-sz@elanic.com.cn elan-sh@elanic.com.cn

http://www.emc.com.tw/
mailto:elan-sz@elanic.com.cn
mailto:elan-sh@elanic.com.cn

% Contents

Contents

1 Introduction 1
Lol OVOIVIEW .ueiiiiiieiie ettt ettt e ettt e e te et e e bt estaeeabeesteeesbeesseeensaesseesseenssesnsaensseenseensnas 1
1.2 Introduction to UIDE Program............cccccooiiiiiiiiiniieiieie e 1

1.2.1 eUIDE Main User INterface.........ccccveriiriuieriiiiieeie et 2
1.2.2 @UIDE Sub-WINAOWSccceeeiiieiiieriiieiieniieieesreesieesaeereeseneeseessseeseessneenseens 3
1.2.2.1 Project WInAOWccceeevvieiiieiiieiieeieeeie et s 3
1.2.2.2 Editor WINAOW.......cooiiiiiiiiieiieeiceieeeie ettt 5
1.2.2.3 Special Register WIndOwccceeeuieriieriiienieeiieieeeeeiee e 10
1.2.2.4 Call Stack WINdOWc.ccocuieiiieeiiieiieeiienieeieesee e 12
1.2.2.5 RAM Bank (General Registers) Window...........c.ccceeveveenieeciiennnens 14
1.2.2.6 'Watch WINdOWccccocuieiiiiiieiieeiieieeeie et 15
1.2.2.7 Data RAM WiIndowcccueeiiieriieiiieiieeieeeie e eve e 20
1.2.2.8° LCD RAM WINAOWoouieiiiiiiiieiieieciecie ettt 20
1.2.2.9 EEPROM WINdOWcceevieiiieiiiiieiieiecieeie et 24
1.2.2.10 Output WINAOWcccvievuiiiiieiieeiierie ettt eveesee e sene e 25
1.2.3 eUIDE MeNnu Barcccuoiiiiiiiiiiiieiieee ettt 27
| g K e Yo] U2 7. TP TRR 27
1.2.4.1 Toolbar Icons and its Functions and Hotkeys............c.ccccveevvrennenn. 27
1.2.4.2 Document Bar........c.ccooouiieiiiieiiieeiieceeeee e 29
1.2.4.3 Status Bar......cooovieiiiieeiieeeeeee ettt 30

2 The eUIDE Commands 31

2.1 eUIDE Menu Bar and its Menu Commands............ccceeeveeeiiieeniiieeniie e eiee e 31
2,11 FIle MONU ...ttt ettt ettt et et aee e ne 31
2.1.2 Edit MONU......eiiiiiiiiiciieiecie ettt ettt ettt e iae e e e seesnaeenne 32

2.1.2.1 Executing Find Command from Edit Menu............cccccvveevennenne. 33
2.1.2.2 Executing Find Command with Shortcut Hotkeys..........c..ccccc..... 34
2,13 VIEW MENU....iiiiiiiiiiiieiieeieee ettt ettt ettt e e e saaeenne 34
2.1.4 Project MENU......ccouiiiiieiieeieeiie ettt ettt ettt ettt e ssae e e naaeenne 35
2.1.4.1 Executing “Dump code over 64K to sram” Command.................. 36

EM78 Series IDE User’s Guide o jii

Contents %
2.1.5 DebUZ MENU......oiiiiiiiiiiieeiieeciee ettt e e e et e e s bee e e b e e seveeesnseeenaeas 36
2.1.5.1 “Run From” Command Sub-Menu Function Description............. 38
2.1.5.2 “Address Breakpoint” Dialog Function Description..................... 38
2.1.6 TOOI MENU.....ciniiiiiiiie et et 44
2.1.6.1 Computing Execution Time...........ccceeevuirerciiieiiiiieniie e eevee e 44
2.1.6.2 Moving Data from File to SRAM
(Applicable to EM78815 only).....cccceeiiiiiiiinieiiienieeceieeeeee 45
2.1.7 OPtiON MENUeiiiiiiiiieiieeiie ettt ettt et e sttt esateebeesneeenns 48
2.1.7.1 Debug Option Setting.........cccecueerieriiienieeiienie ettt esiee e 48
2.1.7.2 Accelerate Reading Registers..........ccoeceeviieiiiiniiiiienieciceeeeien 50
2.1.7.3 VIEW SEHNG ..ottt 50
2.1.7.4 Environment SEttng.........cccceevieriiriiiiniieiierie et 52
2.1.7.5 CUSLOMIZE. .. oeeeiieeeiieeeiiee ettt e e et eeeare e eaaeeenaaeas 53
2.1.8 WINAOW MENU.....cccuiiiiiiiiiiiieeciie ettt ettt et e st eive e e ar e e eaveeenseeennaeas 55
2.1.9 HEIP MENU ...t et 56

3 Getting Started 57

3.1

3.2
3.3

34

3.5

OVETVIEW ...ttt sttt ettt sttt ettt ettt saesbe s ebe e 57
3.1.1 System ReqUIremMeNts..........cccereeriiiiiiriinienienienieesieeteeeesie et 57
3.1.2 Software Installationccceeiiiiiiiiiiiiieee e 57
3.1.3 ANSI Compatibilitycccverieniiiiniinieeienieieeeeese ettt 58
Hardware POWET-UDcooiuiiiiiiiieie et 58
Starting the €UIDE Programi............cccooveeiieiieiiiienieeieesiie et evee s 58
3.3.1 Connect DIalogcoueeuiriiiiiiiiiieecetee e 58

3.3.1.1 RECONNECHIONeeuiiieiiiiiieeiieeiie ettt ettt e 59
3.3.2 Code Option DiIalog......ccccoveeiiriiniiiiinicieiiesiteeeeeeee et 60
3.3.3 Accelerate Reading Registers Dialogccccoevieiiiiiiiieiiiiniiiieiceceeee 60
Create @ NeW ProJECtcoiiviiiiiiiiiiiieetceeect ettt 60
3.4.1 Using the Project Wizard (Project = Project Wizard)ccceevevveennennenne. 60
3.4.2 Using the New Command (File/Project = New...) ..cccooevieieiievieeieieenenn, 64
Add and Remove Source Files from/to Projectcccceeveveevieniiieciieniieiecieeieens 66
3.5.1 Create and Add a New Source File for the Project.........c.cccoceeveriiniincnnenn 66
3.5.2 Add Existing Source Files to the New Project.........ccccoevvinieneriinicncnnne. 67
3.5.3 Deleting Source Files from Project........c.cccoeeviiviinieiiiniininiinicneceneenene 68

EM78 Series IDE User's Guide

fm

3.6 Editing Source Files from Folder/Project.........ccccceevvvevvveennenn.
3.6.1 Open Source File from Folder for Editing.....................

3.6.2 Open Source File from Project for Editing

3.7 Compile the Project.........cceevuieviiiriienieeiieieeeeee e
3.8 Dumping the Compiled Program to ICEc..ccccvvvevieennenn.
3.9 Debugging a Project......ccccceevieriieriieniieiieeieeeeeee e

3.9.1 Breakpoints Setting.........ccceevvueeeriieerieeerieeerieeervee e

4 Assembler and Linker

4.1 Assembler and Linker Process FIOW........covvvviiiiiii
4.2 Statement SYNTAXcccccveeeeriiiiieeiiiieeeeriiiee e e e ereeeeeaaeeeens

4.2.1 How to Define Label...........cccooviiiiiiii,
4.3 NUMDET TYPC..uviiiiieiiieiieeie ettt ettt

4.4 Assembler Arithmetic Operationccceevevveeeeveercieeseeeeenen.
4.5 Program DIreCtiVescccvereeriiienieeiienie et
4.6 Conditional ASSEmMDbIY........ccccviieiiiiiriieeiie e
4.7 Reserved WOTd.......cc.ooviiiiiiiieniieieeieseee et

4.7.1 Directives, OPeratorscceeecueeerveeeseeerireeesireeenveeennnens
4.7.2 Instructions MNEMONICS.uumueeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeees

4.8 PSeUAO INStIUCTION. ...uueeeeeeeeeeeeee et e e et eaeeeeeeenaees

5 C Fundamental Elements

5.1 COMMENTSeviieiiieeiiie ettt e e e saeeeeas
5.2 Reserved WOrdSc..oeeeiieeiiiieiieeee e
5.3 Preprocessor DITECtIVEScccuvierieeeriieeiieeiie e e

5.3.1 #NCIUAC.....viiieiiieee e
5.3.2 #AefinC....cccviieiiiiceec e
5.3.3 #if, #else, #Helif, #endifovvvveiiiiiiie,
5.3.4 #ifdef, #ifndefcooovviiiie
5.4 Literal CoNnStantScccevveeeiiieeeiieeeieeeeieeeereeesreeeereeesveeesevee s

5.4.1 NUMETIC CONSTANT «.neveeaeaeens
5.4.2 Character CONSANTuuueeeeee e eeeeeeeeeeeeeeeeeans
5.4.3 String Constant..........cccueeeeuieeriiieeniieeniie e e

Contents

EM78 Series IDE User’s Guide

oV

Contents %

T B 1 7. T 7 oSSR USRPI 97
5.6 ENUMETALION ..c..eeiiiiiiiiitieiiieie ettt sttt ettt ettt sbe e e saaesieens 98
5.7 Structure and UNIOMcoouiiiiiiiiiiiieeiieie et sttt et st 98
5.8 ALTAY ettt sttt e e s et e e bt e e abeeenabeeeabeesnaeeeas 99
5.9 POINLET ...ttt ettt ettt ettt et et e b naeeeareen 100
5.10 OPCTALOTS ..veveeeiiieeiiieeeitie et etee et e et e ettt e st e e st e e s bt e e sabeeesabeeesabeeesseesaseesneeas 100
5.10.1 Types of Supported OPEratorscceeevvreerireeiieeeiieeeieeeieeeereeeevee e 100
5.10.2 PrefixX of OPerators......cccccveeecuiieeiiiieeieeecieeerieeesieeeeireesreeesereeesveeeseveesnneas 102

5.11 Tf-€lse StatemeNtccueiiiiiiiiiiii ettt 102
5.12 SWItCh Stat@MENTc.eevviiiiiiiiiieieee e 103
5.13 While Statementcoouiiiiiiiiiiiieie ettt 103
5.14 Do-While Statementccueeiiriiiiiiieniieieeierte ettt 104
5.15 FOr Statement......ccoueiiiiiiiiiiiiiieete et 104
5.16 Break and Continue Statements...........cecuerierierrierienieeienienieeie st 105
5.17 GOtO SAtEIMENT ...coueiiiiiiiiiiiieiitee ettt et e 105
518 FUNCHIOMN ..ottt sttt ettt st b et st sbe e saees 106
5.18.1 Function ProtOtyPe.......cccuieeiuiiiiiiiieeiie ettt 106
5.18.2 Function Definition..........cooiiiiiiiiiiiiiiieiiecee e 106

6 C Control Hardware Related

Programming 107
6.1 RegiSter PaAge (IPAZE)eeoveereieiieeiietie ettt ettt ettt ettt e 107
6.2 T/O Control Page (I0PAZE) ...ccvverurrerierieeiieeeieeiteeieenteesveereesereesseeesseesseessseessaesnsens 109
6.3 RamM BanK.........ooiiiiiiii e 110
6.4 Bit Data TYPE c.ooeviieiiieiieeie ettt ettt ettt et e et e be e saa e b saeennees 111
6.5 Data/LCD RAM Indirect Addressingcoccceeevveriereenienieneenienieneeeseeseeeeeeees 112
6.6 Allocating C Function to Program ROM..........ccccceoviviiiiiiiniiiiecieceece e 113
6.7 Putting Data in ROMcocoiiiiiiiiiiiiiiiccee s 114
6.8 ININE ASSEMDICT ...c..eiuiiiiiiiieieeeee e 115
6.8.1 Reserved WOrd.......cc.ooeiiiiiiiiieiiee et 115
6.8.2 Use of C Variable in the Inline Assembly..........ccccoeviiriiiniiiiiiniiiiies 116

6.9 USING IMACTO......eouiiiiiiiiieeieeteeteet ettt ettt ettt ettt b et naes 117
Vi e EM78 Series IDE User’s Guide

Contents

fm

6.10 Interrupt ROULINEGoovviiiiiiiiciieeciie ettt

6.10.1 Interrupt Save Procedure...........ccooveriiieniieiiieniieiieieeeese e
6.10.2 Interrupt Service ROULINE........ccceeeviieiiiiiieiecieeieeieeee e

6.10.3 Reserved Common Registers Operation............ccceeeeveereeercueennnenns

7 Quick Workout on Tiny C Compiler

7.1 INEOAUCTION ...ttt st
7.2 Create @ NewW PrOJeCtcccvieviieiieiieeiieieeeee et
7.3 Add aNew “C” File to the Project........ccccceeveeviiieeiiiieieecie e
7.4 Add a Second File or a New Header File to the Project..........ccccuee...
7.5 The Main(), Interrupt Save, and Service Routine Functions....................
7.6 Project Development with Interrupt...........cccoeveeviiiiiiiiiieniieieeieeeeee,
7.7 Tips on C Compiler Debugging..........cccceeevvieeiiieeiieeeiieeeiie e

7.7.1 Speed up Debugg@ing.........ccceeveeiierieeiiieiieeieeeie ettt
7.7.2 View Corresponding Assembly Code in C Environment
7.7.3 Viewing Defined Variables in Register Windowcccccue...
7.7.4 Reducing Codes Size in SOme Cases.........cccueevueerieenireeieennenaeans

APPENDIX

A Assembly Error/ Warning Messages

AT INrOAUCHION ...ttt
A.2 Class M: Main Program Errors Messagesccoccevverveneenueneeneenennenn
A.3 Class A: Assembler Errors/Warnings Messagescccceevvvereeereenenennne.
A.4 Class L: Linker Error Messages........ccccoeevuerienienienieneeienieneeeeeeesieene
A.5 Class D: Debugger Error MesSagescccveeveereeeiienieenieeniieeieeneeeveenens

B C Conversion Table

B-1 Conversion between C and Assembly Codes..........cccceevieviienieniienieennen.

EM78 Series IDE User’s Guide

o Vii

Contents %

C

F

Frequently Asked Questions (FAQ) 155

C.1 FAQ 0N ASSCIMDLYoooviiiiiiiiiieciiciie ettt ettt et saeeaae s 155
C.2 FAQ on Tiny C COMPILET....c..ooiiriiiiiriiniiiiieitcieee ettt 156
C.4 Contacting ELAN FAE ...ttt 159
UICE Hardware Description 161
D.1 UICE (USB) and its Major Components/Functionsc.ccceeeeveereeneeenneennenne 161
D.2 Special Note on eUIDE Software and UITO60N...........cccoeeevvieeiieecciieeiieeiee e, 162

Library Application Notes 163

E.l € LIDTAIY ittt ettt ettt et e be et eesbe e saeesbeesssesnsaensnasnseensnes 163
E.2 ASSEMDLY LIDTATY...ccueiiiiiiiiieiieiie et st 163
C Standard Library 165
F.1 Character Class Tests: “Ctype.h......cccooiiririiniiiiieceeeee e 165
F.2 String Functions: “string.n”ccccccieeiiiiiiiiieiecice e 165
F.3 Mathematical Functions: “math.h” ... 166
F.4 Utility Functions: “stdlib.h’cccooiiiiiiiiiiieiieceeee e 166
FL5 OthErs. ..o ettt 167
F.5.1 Variable Argument Lists: “stdarg@.h™c.ccocoovviieiiiniiiiiieiieeeeie e 167
F.5.2 Limits: “limits.h” and “float.h”........ccccoooiiiiiiieee 167
F.6 Manual of FUNCHONSccueeiiiiieiieiieie e st 168
F.6.1 Character Classification Routines — isalnum, isalpha, iscntrl, isdigit,
isgraph, islower, isprint, ispunct, isspace, isupper, 1SXdigit............ccecueneen. 168
F.6.2 Convert Letter to Upper or Lower Case — tolower, toupperc....... 170
F.6.3 Copy a String — Strcpy, SINCPY .oeveeeueeerieniieeiienieeieeeeeeieesveeieesveeseeeeeeees 170
F.6.4 Link Two Strings — strcat, StrNCatc.eoceeeriierieeiiienieeieeee e 171
F.6.5 Compare Two Strings — stremp, SNCIMP ...eeuvveeveeriieeieeriieeieeriieeieesveeieens 171
F.6.6 Locate Character in String — strchr, Strrchr..........occoeeieiiieiiiiieeiieieeee 172
F.6.7 Search a String of a Specified Set of Characters — strspn, strcspn 172
F.6.8 Search a String of Any Set of Characters — strpbrkccccoceeviiviniennenne. 173
F.6.9 Locate a SUbSIIING — StISIT.....ccueiiiiiriiieiieiie ettt ettt 173
F.6.10 Calculate the Length of a String — strlencccccooevienininieniiicniee 174

viii ®

EM78 Series IDE User's Guide

%‘ Contents
F.6.11 Extract Tokens from Strings — Strtokcccceeeriieeniieeniieeeie e 174
F.6.12 Copy Memory Area — MEMCPYeeeeerurieeeaiiieeeeeiiieeeenireeeesnnreeesssnnneeesnnnns 175
F.6.13 Copy Memory Area — MEeMMOVE.........ceeeerruvreeeeeiireeeeniieeeeenreeeessnnereeeennns 175
F.6.14 Compare Memory Areas — MEMCIMPccccevreeeerrurreeeeiiieeeessreeeessnnereeesnnns 176
F.6.15 Scan Memory for a Specified Character — memchr..............ccceevveeeeneennn. 176
F.6.16 Fill Memory with a Constant Byte — memset..........cccceeevvieeriieenieeeieens 177
F.6.17 Sine FUnCtion — SIN......ccccoiiiiiiiiiiiiiiieiiieie et 177
F.6.18 CoSine FUNCLION — COS....eoiuiiiiiiiiiiiie ettt 177
F.6.19 Tangent FUNCHON — taN........cccciiiiiiieeiiiecie et 178
F.6.20 Arcsine FUNCtion — @SNccceoeeiiiiiiieniieiienieeice e 178
F.6.21 Arccosine FUNCHION — QCOSeeiiiiiiiiiiieiieeiieiee et 179
F.6.22 Arctangent FUNCHION — atan..........ccceeviiieiiiieeiiieeiiee et 179
F.6.23 Arctangent Function of Two Variables — atan2.............ccccceeviveeieeenneenne, 180
F.6.24 Hyperbolic Sine Function — Sinh...........cccceeviiiiniiieniieecie e 180
F.6.25 Hyperbolic Cosine Function — CoSh..........cccoovieviiieniiiiiiiieie e, 180
F.6.26 Hyperbolic Tangent Function — tanh.............cccceevvveeiiiincieenie e 181
F.6.27 Exponential, Logarithmic, and Power Functions — exp, log, log10, pow..181
F.6.28 Square Root FUNCHION — SQTtcccvveeieiiieiieecieeeiee e e 182
F.6.29 Ceiling Function: Smallest Integral Value

Not Less Than Argument — Ceiloouiiiiiiiiiniiiiiceecee e 182
F.6.30 Largest Integral Value Not Greater than Argument — floor........................ 183
F.6.31 Absolute Value of Floating-Point Number — fabs............cccccoeevevviennenen. 183
F.6.32 Multiply Floating-Point Number by Integral Power of 2 — ldexp 184
F.6.33 Convert Floating-Point Number to Fractional and
Integral Components — freXPc.eeeveeriierieeiiienie ettt 184
F.6.34 Extract Signed Integral and Fractional Values
from Floating-Point Number — modf............cccoveiiiiiiniiiniicieeeeee 185
F.6.35 Convert a String to a Float — atof...........cccceeiviiieiiiieeeee e, 185
F.6.36 Convert a String to an Integer — atoi, atol...........ccceeevieerciieercieeeiie e, 186
F.6.37 Random Number Generator — rand, srandcccccvvveeeieiiiiiiiinveeeeeneenenn. 186
F.6.38 Compute the Absolute Value of an Integer — abs, labscccceeueeenee. 187
F.7 APPICAION NNOLES ...ocvvvieiiiieciiieeiie et eette et e et e et e e e e st e e saeeesnbeeesseeesseeennaeas 187

EM78 Series IDE User’s Guide eix

Contents

User’s Manual Revision Histor
Doc. Version| Revision Description | Date

0.1 User’s Guide Initial Preliminary Version 2009/07/08

1.0 User’s Guide Initial Official Version 2009/11/11

1.1 Modified & added new info to Section 3.4, “Create a New Project” 2010/05/06
Added Appendix F, “C Standard Library”

X o EM78 Series IDE User’s Guide

% Chapter 1

Chapter 1
Introduction

1.1 Overview

The EM78 Series Integrated Development Environment is a project oriented
development tool for ELAN’s EM78 Series microcontrollers. It comprises of
the UICE development in-circuit emulator and the eUIDE software tool.

1.2 Introduction to eUIDE Program

The eUIDE is a Windows 2000 or Windows XP based program for UICE
development in-circuit emulator that is used in the development of EM78 Series
8-bit microcontrollers of ELAN. The aims of the eUIDE are to provide a
friendly operation environment, powerful functions, a high-speed transmission,
and a stable system during development of the microcontrollers.

The eUIDE offers a lot of friendly functions including block comment,
auto-updated registers, and real time line disassembler. It is made up of four
main modules, namely; the Editor, Project Manager, Assembler, and Debugger,
with each module having their respective submenus.

B Editor: provides editing functions for creating, viewing, and modifying the
source files. It supports Find, Replace, Undo/Redo, and Cut/Copy/Paste.

B Project Manager: provides functions for inserting files into a projects
deleting files from a projects and compiling of the project.

B Assembler: support such functions as Include, Macro, Assembly
Arithmetic, Conditional Assembly, List Files, and Map File

B Source Level Debugger: provides source-level debugging function on the
target which is embedded on the UICE. You can explore and analyze the
status register, and the memory contents of the EM78 series target with the
eUIDE. With its powerful features, like multiple breakpoints, real-time
modification of register contents, and disassembly, the UICE becomes an
indispensable partner of eUIDE in offering a perfect development
environment for EM78 Series microcontrollers

EM78 Series IDE User’s Guide Introduction e 1

Chapter 1

1.2.1 eUIDE Main User Interface

The eUIDE is a project oriented integrated development environment (IDE)
system that is used to edit user application programs and generates
emulation/layout files for ELAN's EM78 series (8-bit) microcontrollers.

Editor Window

Special Regilsters Window

ETFTX)

Menu Bar —; |
-5 %]
Toobar — CEALSR WAL LA 8 [SUMLBRTE0N0 A8 G
Document Bar— [@0T aaaas == 0x20.1:rbank 0 = o
5 &3 e 02 bbbbb == 0z2l:rbank 0 = TR
g - 0 cocce == 0 pagn %
—*ﬁ“;g‘:f‘ 04 ddddd == 0x05:rpoge]
B i s W FEFFE == Ox05:rpage Lo i
It 06 ggggg == 0x05:rpage oo :
B 9 0f hhhhb == (x06:10page 0 0001-1000 | Frge
5 Mg Filet O iiiii == Dx0G6:icpage 1 0§0-1100
= 09 aa == 0x21 w oRE W [RY (0G5 w0
3 Libmry Fiks
i :‘11 L i [0 RhDF R D0 Ch FF O6 0
= e o= Uxeb T o an RT 00T (PR CT o
ae——— 1# org 0x0 = -t ta
S ® 0 B 00 |C0 |FF R
= ot L. 0 LR =,
el mev 0x10.4 " F iRn D RA |m
16 mew Uxll.a m b RE M0 ORE 0 CR
17 mev Ox12.a L] 60 IRC 00 L=
18 mov 0x13.a w0 8 R0
18 mow Old.a W B m ¥
20 mov 0x15.a 0
21 moe D 1h,a
2 moev 0x17.a
Call Stack 2 mov Onide
1 24 mev 0x19.a ame | Addross y .
Window ey s Home | ddress | Type [Value |
a6 g ey g R AAAAA %20 Bil{1)ul Bank(l) 0«00
27 mov 0xlC.a BEEEE o1 BankiD) Quld
Pipess 28 more D108 CCCCC W05 Registero) U0
i 29 mov 0z1E.a oODDD S Register(1) (]
Document Bar = an mov 0x1F,a ; 0x10 FFFFF il Reqister(7) 2]
E]| mov 0x20.a GGEGG s Reqister(3) “ 25
32 mov Dx2l.a HHHHH Tl Contrali) i F
Data RAM ‘Jj: mov gxgg-a 1] i Contrai{1) a0
. — mov 0x23.a . w
Window om0 5) e el | 2]
" 0T 234567 [0 9 [& [BTCTOTE—m] 2 PR Eelr @@ AE[CDIETF] [~
RAM Bank BOX [14 ol 00 00 00 00 06 AB Cf 00 0 86 O0 DB BUU [DC 12 A2 W Al BD 91 Al @ 31 @ BT 5% 18 W -
an Bi 13 BI AD FI ER BC B 12 W 3 4C WM 91 Hq 4C BC B3 AT A0 AC A U1 W C2 N or 1B
Window 18 07 45 95 60 AB 29 08 90 09 R0 4 47 3 B02 ©1 0D 94 52 FA D2 FB 41 D0 01 T W 16 E3 80
BI_JK 25 % 71 (C2 |31 01 05 90 15 6L DO 11 3 40 Az 10 B03 |ES 20 03 10 3D 00 OC 40 42 I7 4D RN B
50 [51 [52 |53 54 [55 [56 |57 [50 [29 [310 [511 [512 [513 [514 [515 [516 [517 [510 [515 [520 521 |52 |525 [504 [555 |55 [507 |5k [885 [53 |55 [~
Cojc o o o0 0 o @ @ 0 0 0] a i o o @ 0 @0 @0 0 0 i
Cije o @ 0 6 0 0 @ o 00 [0 o 0 0 6 @ 0 0 0 o @ i
czlo oo 0 6 00 0 o 0 [0 [0 o 0 0 o o o g 0 0 0 0 |
cilo o 0 0 0 v o @ o 0 o [] o 0 0 o @ o o 0 o 0 [~
Output Window —izzsiins - g
p — i
] Build Tnformagion), Fod inFies |, Memge), Frogam Fom i)]
Status Bar —{emmes o, et s — e UM

Figure 1-1

LCD RAM Window

eUIDE Main Window Layout

Watch Window

NOTE
Actual number of sub-windows may vary in accordance with the actual target IC in use.

2 e Introduction

EM78 Series IDE User’s Guide

Chapter 1

Project Filename

1.2.2 eUIDE Sub-Windows
The sub-window may be displayed or hidden by clicking on the pertinent

window commands from the View menu (see Section 2.1.3)

1.2.2.1 Project Window
The Project Window consisted of two view modes, namely; File View mode

and Label/Function View mode.

B File View Mode

The Title Bar of the Project window shows your current microcontroller and
project filename.

(*.apj),

or *.cpj in C mode

Target

Microcontroller

Click on the selected
folder to expand and
browse its contents

\ = The Project window holds the Source,

- W> Header, List, and Map files.
/(—E Source FileS

TestReg.DT Where:
A Header Files Source Files (*.dt) B

- AList Files
TestReg.1st are the assembly source files that are added
SLibrary Files into the current project. In C mode, source
file will be *.c file.

‘AMap Files
Header Files (*.h) —
are the reference files required by source

Lt

)
(= Fieview %2 Label/Function View

Figure 1-2a Project Window in program.
File View
List Files (*.Ist) — are the list files.
Map File (*.map) — are the map file.

Library File (*.bbj) — are the reference files required by source program.

After you have opened or created a project, click on the selected folder to
expand and browse its contents. Then right-click on the selected file to display
its shortcut pop-up menu.

Right-click on the selected
file to display its shortcut
pop-up menu

Froject

S EH?B::??S-—-M?.API

: =3 So Files
—— ey
‘a Header Files -3 Header Files Cpen
[+-4-3 List Files - [M7TES. Properties
i =429 List Files
. . o L[f] MTest] Delete
9 Library Files {25 Map e
4= Lihrary Files

Figure 1-2b Accessing the Supporting Files from Project Window

EM78 Series IDE User’s Guide

Introduction ¢ 3

Chapter 1

The following explains the functions of the 3 commands in the pop-up menu.

Open — Opens the selected file. For example, right clicking on 447test.dt,
the file then opens. If the file is already opened, no action is
performed.

Properties — Displays the complete path of the selected file or as illustrated in
the following figure which shows where the 447test.dt file is
located.

Filename : DAEMCACP447444 Test dt

Figure 1-2¢c An Example of a Complete Path of the “447test.dt” File

Delete — Removes the selected file from the current Project Source Files
folder. Ifthe file is still opened, the program closes the file before
removing it. For example, if you select to remove the 447test.dt
file, a confirmation dialog will display. Click the Yes to remove
the file from the project. Otherwise click No.

Figure 1-2d Removing a File from Project Source Files Dialog

B Label/Function View Mode

To access the Label/Function View window, click the Label/Function View
tab at the bottom of the Project window

x|| After performing a code dump, eUIDE
B MAIN.C i’ will automatically determines the

& main functions from “C” code (see figure at

: ?nterrupt_l left) and labels from ASM code. The
- % interrup . . .
& %= EEPROM.C result is then displayed in the

Label/Function View mode of the

Fileiiew))
Project window categorized by files.

B3| abel/Function Yiew

Figure 1-2e Project Window in
Label/Function View

4 e Introduction EM78 Series IDE User’s Guide

% Chapter 1

Imp-roid maini) To find the location of the displayed label or
{ function in the file, double-click on a label or
function. The eUIDE will automatically

Figure 1-21 Searched Label pinpoint to the pertinent location in the Editor

/Function Location . . .

Pinpointed in the in Window (as illustrated at left). At the same time,

Editor Window eUIDE will display the search results in the
Output window as illustrated in Figure 1-2g
below.

L= L

Searching for "main"™ in "MATN.C".
D: %Y DOCUMENTS\SEHE \MATIN.C (48):void main()

1l occurrence(s) found.

< | o [% Build 3 Information 3 Find in Files 4 Message » Frogram Eom

Figure 1-2g Simultaneous Search Results Display in the Output Window

If after editing the code eUIDE is unable to locate the label/function location in
the Editor window, the Output window will display a message providing a
reason for not finding the searched item.

1.2.2.2 Editor Window

T org 0x0 The Editor window is a multi-
2 start: windowed editing tool for creating,

mov a,@80x02 viewing, and debugging source files.
mov O0x20,a

mov Ox2l.a
inc Ox20
inc Ox21
Jjmp start

[B B Y T

Figure 1-3a Editor Window

Its major editing features are:

® Unlimited file size

m Multiple files can be opened and displayed at the same time
m Insert (overstrike) mode for editing

® Undo/Redo

m Clipboard support (text can be cut, copied, moved, and pasted onto the
clipboard using a keystroke)

® Drag and drop text manipulation (highlighted text can be dragged and
dropped between any of the IDE windows)

EM78 Series IDE User’s Guide Introduction e 5

C

hapter 1

B Interacting with Editor Window

The figure below shows a typical Editor window displaying contents of an
opened source file (447test.dt). Assembly keywords are shown in blue,
comments & comments symbol are in green, values are in brown, and the rest
are shown in black.

R10 == Dxzl0:rpage O

sinclude "447test R"

org Oxfff
jmp =1
org 0xz00
s1:
clr Oxll
clr OxlZ
s2:
ingc Oxll
inc OxlZ
jmp =2

F

Right-click anywhere within the Editor window
to display an Edit shortcut menu (shown at right)
exclusive for Editor window application.

Note that most of the shortcut menu commands
are also available from the Edit menu of Menu

Each command in the shortcut menu functions as
follows:

Cut — Removes the selected text from current

location and move (paste) it into another
location.

First, select the desired text range you
want to move and then right-click within
the selected text. With the shortcut menu
on display, click Cut command from the
menu. The selected text are then
removed from the Editor window (as
demonstrated in the following figures)
and temporarily stored in the clipboard.
Proceed to paste the text into your target
location.

Figure 1-3b Editor Window Displaying Contents of an Opened Source File “447test.Dt”

& cut Shift+Delete

Copy Ctrl+C
& Paste Chrl

Presious Pasition

BookMarks C

Index BookMarks v
Go To Index BookMarks »

5o to Label

Add to Watch

Figure 1-3¢ Edit Shortcut Menu
for Editor Window

6 e Introduction

EM78 Series IDE User’s Guide

Chapter 1

r LI T LT TR LED G W IT

org Ozfff
Jmp s1

3,'
= G : rincIude "447test hT

paste Ctrl+v ory Oxfff
jmp =1

Preyvious Position ory Ox00

BookMarks v

Figure 1-3d An Example of a Cut Command Operation

Copy — First, select the desired ;include "447test.h"

text range you want to g D}ifff
jmp =

copy and then right-click org 0z00
within the selected text.
With the shortcut menu
on display, click Copy
command from the menu.
A copy of the selected
text is then temporarily
stored in the clipboard.
Proceed to paste the text
into your target location.

o Cut Shifts Delets

Ctlt¥

Add to Token pool
Lazt Pogdtion
et Position

Figure 1-3e An Example of a Cut Command
Operation

Paste — Insert the selected text ; ”“3%“?? ; "447test.h”
(that has been recently cut ?;g S}i
or copied into clipboard) org 0x00
into the target location. sl:
The figure at right shows clr Ozll
clr Oxl2
an example of a paste =7
result (framed) at the ine Oxlil
bottom of the same page ine 0x12
in the Editor window. Jmp sZ
sl:
clr Oxl1l
clr Oxl2
52
inc Oxll
inec Oxl1Z2
jmp 52|

Figure 1-3f An Example of a Paste Command
Operation

EM78 Series IDE User’s Guide Introduction e 7

Chapter 1

BookMarks — Insert markers to specific lines that you may wish to return to at

later time.
1) Select a line, then from b Cut 5hﬂ+DB|'8te
Ctri+C

2)

Copy

shortcut menu click B paste

BookMarks - Toggle
from the Menu bar (or
directly press the shortcut
keys CTRL + F2).

Then go to the bookmarked
lines. For example, if you
have previously book-
marked Lines 1, 5, and 8
(as shown in the sample figure below) and want to return to the lines, access
Toggle command again. The Previous, Next, and Clear All commands
become active this time.

Ctrl+V

Previous Position

¥] Toggle Bookmark CirkF2

Index BookMarks .| “% Previous Bookmark Shift+F2

Go To Index BookMarks » & Next Bookmark

% Clear Al Bookmarks Ctrl+Shift+F2

Add to Watch

Figure 1-3g An Example of a BookMarks Command
Execution

Click Previous to go upward to the E; 9;9 gi‘fff
bookmarked line previous to the current 3 érg 000
position (or directly press the shortcut 4 s1:
keys SHIFT + F2). Cg nop
no
Click Next to go downward to the 7 nog
bookmarked line next to the current 8 nop
position (or directly press the shortcut 9 jmp sl
keys CTRL + SHIFT + F2).
Click Clear All to remove all existing ~ F/9ure 7-3h An Example of Lines Book-
bookmarks marked at Lines 1, 5, & 8

Index BookMarks — Embed bookmarks with index numbers. With indexed

bookmarks, you can directly access to the bookmarked
line you wish to return to.

To embed index number into existing | * EririiiE
Copy Ctri+C
bookmarks, place cursor on the B paste Crrlsv
selected bookmarked line, then click R
Index BookMarks - Toggle e ,
BookMarks x (where “X’” is the 0 ~ Clear All Index Bookmarks

EO T ELOTES o Toggle Bookmark 0 Ctrl+0

Toggle Bookmark 1 Ctrl+1
Toggle Bookmark 2 Ctrl+2

9).

Add to Watch

You can also directly press the
shortcut keys CTRL + X (where “X” =
to be assigned index number 0 ~ 9).

Toggle Bookmark 3 Ctrl+3
Toggle Bookmark 4 Ctrl+4
Toggle Bookmark 6 Ctrl+6
Toggle Bookmark 7 Ctrl+7
Toggle Bookmark 8 Ctrl+8

Toggle Bookmark 9 Ctrl+9

Figure 1-3i An Example of Lines Book-
marked at Lines 1, 5, & 8

8 e Introduction

EM78 Series IDE User’s Guide

The figure at right shows bookmarked
Lines 5 & 7 are embedded with Index
1 & 7 respectively.

Chapter 1

oryg Ozfff
jmp s1
org 0z00
=1l:

nop

nop

nop

nop

jmp s1

S

000 = O e Ll RO =

Figure 1-3j An Example of “Indexed Book-
Markes” at Lines 1, & 7

Go To Index BookMarks - Go to a particular index bookmarked line.

From shortcut menu, click Go To
Index BookMarks. Then from the
resulting submenu, click on the
indexed bookmark number you want
access.

You can also directly press the
shortcut keys ALT + x (where “x” =
the target bookmark index Number 0 ~
9).

& Ccut Shift+Delete

Copy Ctr+C

@ paste Ctri+v
Previous Position
BookMarks

Index BookMarks v
Go to Bookmark 0 Aft+0
Go to Bookmark 1 Aft+1
Go to Bookmark 2 Alt+2
Add to Watch Go to Bookmark 3 Al+3
Go to Bookmark 4 Alt+4
Go to Bookmark 6 Alt+6
Go to Bookmark 7 Alt+7
Go to Bookmark 8 Alt+8
Go to Bookmark 9 Alt+9

Figure 1-3k An Example of Accessing
Indexed Bookmark Line 5

Go to Label of ... — Find the location of the displayed label or function in the
file. eUIDE will automatically pinpoint at the pertinent
location in the Editor window (see Figure 1-2f, Section
1.2.2.1). At the same time, eUIDE displays the search
results in the Output window as illustrated in Figure

1-2g.

EM78 Series IDE User’s Guide

Introduction ¢ 9

Chapter 1

Add to Watch— Watch the data change at the register locations in the
Watch window during debugging.

Aﬁer dl‘lmping project to ICE,‘ 01 R10 —= Oz10:rpage 00
right-click on a temporary register 02 EF:% T
name (followed by “==" symbol and 33 - Chisc
register page or ram bank or control 05 o
register page) as indicated in the 06

. o7
example figure at right. From the 08 <1

. . Mext Position

resulting pop-up menu, click Add to 09
Watch. Then observe Register R11 1'1] . BookMarks '
being added into the Watch window. 12 Index BookMarks 5
Real-time changes of the data during 13 Go To Index BookMarks
debugging can be observed from this 15
window. 16

When right-clicking on a temporary
register name with double—equal
characters (= =), but without register
page/ram bank/control register page, the Watch Dialog will display
instead. See Section 1.2.2.6, Watch Window for further details.

Figure 1-31 An Example of Adding Register
R11 into the Watch Window

1.2.2.3 Special Register Window

1] i i i
e The Special Register window ;hows
R10 |FF |ROGA,¥) |3FFF

When value B I SO the updated contents of the registers

changes, it is ——{{E2 FF R2pc 00 and also that of the 1/O control

. R13 1111-1111 | Pagel Page? Page3 . .

shown in red ERE I TR TTTRTI register depending on the MCU type
R15 |FF |R5 FF RS FF [R5 FF |R5 FF|C5 |FF .
RI6 |FF R6 FF R6 |FF |R6 |FF|R6 FF (CG |FF C6 |FF 1n use.
R17? [FF |R7 FF R7 FF R7 FF |C7 |FF |C7 |FF
RI8 |FF |R8 FF R8 |FF R8 |FF|C8 [FF|C8 [FF I 1 1
L = = 9 % romor | When the Special Register window
Rix FFRA [Ra [FFRs |FFRA W a® | s closed, it ceases to interact or read
RiB |FF |[RB FF EB FF |EB FF |EB FF |CB |FF |CB |FF
RIC [Flc | ®c F[RC | «wmc® | the hardware contents, except for
RID |F Einary i RD |FF|RD |FF CD |FF
RIE [Fvhes | R |F E | some very special registers which is
RIF | i CF |FF .

Ei | read internally.

Figure 1-4a An Example of Special Register
Window Displaying Updated Registers

B Changing Special Register Value Directly by Editing

R16 | FF] To change a special register value,

P17 BD] double-click on the selected value (BD
1
1

RiZ in the example shown at left).

E19 Fo

ois DT

Figure 1-4b Double-Click on Selected Value
(BD in this Example)

10 e Introduction EM78 Series IDE User’s Guide

Chapter 1

N ue t d aft EIGFF
ew value turns red after
clicking anywhere in the _| R17 BD 1
Special Register 13 1
window EID 1
Tis T 1

Figure 1-4c Key-in New Value (77 in this
Example) to Replace the

Selected Value

With the existing value highlighted,
key-in the new value (77 in the
example at left figure). Observe the
new value changes to red when you
click anywhere within the Special
Register window.

B Switching Special Register Value into Binary/Hex Value

ElL BE E& |FF
Check mark denotes R1B IE‘ Ei -
selected value is —— 1= EF vH >
already in hex FI1D FE i
R1E|FF Edit
E1F FF
E3F Da

Figure 1-4d Right-Click on the Selected
Value to Display the Binary
/Hex/Edit Commands

T B
Rl RIE
RIC ER RIC

Figure 1-4e Click Hex Command to

Switch Binary Register Value

into “Hex” and Vise-Versa

Right-click on the selected value, a
pop-up menu containing commands for
editing the selected register value will
display.

The following describes each of the
menu commands:

Binary — Switches the register value
from hex to binary format. If
the value is already in binary,
this command is prefixed
with a check mark (V).

Hex — Switches the register value
from binary to hex format. If
the value is already in hex,
this command is prefixed

with a check mark (v).

Edit — This command auto-selects the clicked value and allows you to change
the value by editing. This is the same as double-clicking on the value as
explained above. However, using this Edit command function is

preferable.

EM78 Series IDE User’s Guide

Introduction e 11

Chapter 1

1.2.2.4 Call Stack Window

Ik
Level |fddres= |
1] Q0000
0l (0000
nz (0000
nz (0000
04 Q0000
5] (0000
5] Q0000
07 00000
ng 00000
] (=0000
10 (0000
11 (0000
12 (0000
13 Q0000
14 Q0000
15 (0000

Figure 1-5a Call Stack Window

The Call Stack window shows the updated
contents of call stack which indicate the actual
hardware content.

When the Call Stack window is closed, it ceases
to interact or read the hardware contents.

B Reading Stack Level

In general, a stack does not have an initial value.
When you press F6, eUIDE resets all stack cells
to 0x0000. Due to ICE hardware design
constraint, if a stack is full during program
execution (as shown in the figure below) and
returns to the calling sub-routine. Reading the
stack level again will display the result as shown
in Figure 1-5¢. This may also affect
higher-level sub-routines (as shown in Figure
1-5d).

] 4] slackdtl
=l 117 call sub_28 ZI
52 EM79808—STETR AP L nop
430 Souree Files 18 ret
A ekt 120 sub_28:
\ 23 Header Files 121 call sub_29
423 List Files 122 nap
© A skl 123 Tet
L5 Map Files 124 sub_29:
L.423 Library Files 125 call suk_30
126 nap
- 127 ret
126 sub_30:
129 call sub_31
Call sc) i 130 a5
Level |Addues ‘ - 1 ret
23 |0A001B 132 sub_31:
2 |odoie $133 no
25 |0x00i5 134 _
6 |oaniz
70 |000F
%8| 000C
FER [
300 |00006 il
31 |o.0002] =
hd KT | L‘_

Figure 1-5b All Stack Levels are Full (as Indicated by the Breakpoint Setting)

|4 stackd | | steckat |
Projest == 120 sub_23: j Fojeet = SN ret _7_!
= u Enraees STETR AR | | 2] call sub 23 = 3 EM78808 STETR AP || [112 sub_Z6:
54 Sonrs Files 122 nop 5143 Souree Fies 113 call sub_27
o 121 = gyl 2 ———
3 oador Files b 29: {2 Heoder Files =115 :
23 List Files 125 call sub_30 €3 List Fles 116 sub_27:
okl 126 nop] & stk lst 117 zall sub_28
S s P . 3 ep s s Y
3 Ly Fles 129 call sub 31 S 120 sub_28:
! @130 no L 121 call sub_29
11 I — 12 nep
132 sub_31: 123 ret
Call stack 133 nop [Calstck 2 x| 124 sub_29:
Addes | 134 ret Level A | 5 125 call sub_30
3 |0a0i8 2 |o400c 126 nop
7% |0w0is 3|00 1zt T
02 EH (-0005 TR
3| 0x000F R [e o —
Vi Ox000C 27 00003 131 ret
Rl 2B 0000 192 sub_31;
28 |00008 28 |0x0003 133 nop
B 100 F0] 0:0003 134 Tet |
Kl o002 - - E D000z = N
=1 {141 | — =1 |4 | o

Figure 1-5¢ Stack Level Returns to the Preceding Stack
Level (See New Breakpoint Setting)

Figure 1-5d Stack Level Returns to an Earlier and
Several Levels of Stack

12 e Introduction

EM78 Series IDE User’s Guide

Chapter 1

Note that the last (next) stack level still shows 0x0003 (the value of the last
stack level when all stack were full)

Note that all the subsequent stack levels still display 0x0003

B Step-by-Step Execution to Change Stack Values

- - 9] stacl
When you Perform a step-by ‘ |) k| E— -
step execution (F7), eUIDE will |[=Szmwws sterwar| | 00 =l
T I 107 ret
compare the last stack value ST 08cwn 25
. B8 L ks 2110 i =
with the stack value after the R L
. . . 423 Library Files SHR_zo:
“ret” action to identify the - o o new
" 115 ret
current level position of the — | e
evel [Addes - 118 na
stack. It then changes the value [=] 118 o
o1 0+0008 I:'é[l sub_Z8:
of the last stack level value from [F=joec: 13 sl
. . 123 Tet
0x0003 to 0x0000 as indicated | |+ oo ™ J
in the figure at right. B oo 127]
E o000 - I‘iZB sub 30: | _>|L‘

To set the values of the hlgher Figure 1-5e Using Step-by-Step (F7) Execution to
stacks level to 0x0000, continue Change the Last Stack Level Value

to perform Step-by-Step
execution. This will not affect the normal stack operation as indicated in the
figure below.

tack. dt |
z T A= [092 sub_z1: = |
=4 EM78808—STETR. AP i eald ssub g2
Ea Source Files 034 nen
C[E) skt 035 ret
-3 Header Files Hlsub_22:
Ea List Filss 0987 call sub_23
CTE skt o>098 nop
3 MepFis lugg sub_23 i
423 Library File: et
L by Fiks 101 zall sub_24
K 102 nap
|E] FileView | ™3 LabelFunction... 103 ret
— 104 sub_24:
all stacke 105 call sub_25
R | 106 nop
2|00 :g; ¢ Bek
T | w0003 SUb_ea:
25 |00z :?g 521 & sub_26
6| o003 e reE
B 00003 112 sub_26:
25 |0-0000 13 zall sub_27
28 (0000 @114 nop
30 |owo0m 115 ret
31 |mwooon =]15 sub 27: _ILI
Zl ||+ | v

Figure 1-5f Executing Step-by-Step to Change the Values of the Higher-Level Stacks

Currently, eUIDE remains unable to determine the correct stack level position
at which the ICE stops. This is due to the ICE hardware limitation which unable
the eUIDE Call Stack window to properly display the correct stack level
position. However, this does not affect whatsoever, the actual normal stack
operation.

EM78 Series IDE User’s Guide Introduction e 13

Chapter 1

all.

NOTE

After completing the Go or FreeRun command execution, if all stack level values in Call
Stack window display the same value, this could be caused by either the program has
entered the first level of the call function, or the program has not entered any function at
Under this condition, it is not recommended to use the StepOut command.
Otherwise, the program will jump to the first level address in the Call Stack window.

1.2.2.5 RAM Bank (General Registers) Window

ﬂ [0J1r 234 [5]6[7 [8[9 [a]B[C[D]E]F | [A]
BO_2X [F |FEIFE FF FF |FF FF FF FF FF |EF |FF FF |FF FF FF |
B0 3% [FF |R By | FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
Bl 0¥ |FF F ¥ Hex FF |FF |FF FF |FF |FF FF FF |FF FF |FF
BI3K |FF B i FF |FF |FF |FF |FF |FF |FF FF |FF FF |FF
BZ 27X |FF Frerererer—rrr FF |FF |FF FF |FF FF FF FF FF FF |FF L
Bl 3% |FF FF FF FF FF FF |FF FF FF FF FF FF FF FF FF |FF
B3 X |FF FF |FF FF |FF FF |FF FF FF |FF FF FF FF FF FF |FF

|| |B3_3X |FF FF |FF |FF FF FF |FF FF |FF |FF |FF FF |FF |FF |FF FF

Figure 1-6a Ram Bank (General Registers) Window

The Ram Bank (General Registers) window shows the updated contents of
the common RAM bank registers. When the RAM Bank window is closed, it
ceases to interact or read the hardware contents.

B Changing General Register Value Directly by Editing

BNE

34 |5 |

FF 33@ E5 T
EE IF F: FB 7

EF 7D
FS EE

TF |FF F& |
F?' DF 55 |H

Figure 1-6b Double-Click on Selected Value
(EF in this Example)

New value turns red
after clicking anywhere
in the eUIDE window

Figure 1-6¢ Key-in New Value (33 in this
Example) to Replace the

2]

3[4 [5 |

DF
7D

=

13 F3 BS

FF EF2 FE
7F FF F4

™ T

Selected Value

To change a special register value,
double-click on the selected value (EF
in the example shown at left).

With the existing value highlighted,
key-in the new value (33 in the
example at left figure). Observe the
new value changes to red when you
click anywhere within the eUIDE
window.

14 e Introduction

EM78 Series IDE User’s Guide

Check mark denotes
selected value is
already in hex

Chapter 1

B Switching General Register Value into Binary/Hex Value

x
j 0 [t J2 J3—4 |5 [6 |7
BO_2X °F FF 33([EF|'J_ " °T B
2% |F: BB DF PP~ 0% | pF
Bl 2% |ID EF 7D 7F 7 He¥ FF
El 3% |[FF F5 EB F7 Edit 7F
BZ 0% |F7 FF 76 FD 7

Figure 1-6d Right-Click on the Selected Value
to Display the Binary/Hex/Edit

Commands
T2 pP— 415 [6 |
FF 3£ [1110-1111|§2 BS DF 1]2 J3—4 [5]
EE DF F: FE 7F FF 33&2?/23 ES
EF 700 7F FF Fi FF EE DF 3 FB

Figure 1-6e Click Hex Command to Switch
Binary Register Value into “Hex”
and Vise-Versa

Hex —

Right-click on the selected value,
a pop-up menu containing
commands for editing the selected
register value will display.

The following describes each of
the menu commands:

Binary — Switches the register
value from hex to
binary format. If the
value is already in
binary, this command is
prefixed with a check
mark (V).

Switches the register
value from binary to
hex format. If the value

is already in hex, this command is prefixed with a check mark (v').

Edit — This command auto-selects the clicked value and allows you to change
the value by editing. This is the same as double-clicking on the value as
explained above. However, using this Edit command function is
preferable.

1.2.2.6 Watch Window

x

j Hame Address Type YValue
Ad Oxz0 Bank(0) O0z00
BB 0x3F Bank (0] Oz 3F
oo Oz06 Control (0] OxzFF
EE Dz06 Control (1) Oxz40
cc Ox10 Register(0) 0xz07

", Watchl / WatchZ 7 Watch3 / I EN|

Figure 1-7a Watch Window

With Watch window, you can add variables that are declared in assembly file.
The Watch window will show the defined variable information, such as name,
contents, bank, and address. Refer to Section 4.2, Statement Syntax; for more

details on assembly codes.

EM78 Series IDE User’s Guide

Introduction e 15

Chapter 1

To view real-time changes of selected register values from the Watch window
during debugging, the register values have to be entered into Watch window.
To do so, do one of the following (three methods are available):

B Right-Clicking the Selected Register Value Directly from Editor Window

1) Right-click a register value (or 01 aa == 0x20:rbank O
variable) from the Editor 02 bh == DOz3F:rhank [
window. From the resulting 33 oo 5= DR teade:
pop-up menu, click Add To
Watch command.

06 e ¢
oo 07

Copy Cirl+C
If the selected value contains na cte Cirlay
register page (or ram bank or 08
control register page as shown :?
in the right figure), the register 12 Next Position
value is directly displayed in the 13 BookMarks .
Watch window (see Section 14
1.2.2.2, Editor Window = *“Add .} g Index BookMarks '
to Watch”). @7 Go To Index BookMarks »
If the selected value does not : g

contain reglster page/ram

bank/control register page (as Figure 1-7b Select & Right-Click Register

shown in the figure below), the Value “ee” (with Register
Watch Dialog (see Figure 1-7d Page Register Page) from
below) will display instead. Editor Window, Pop-Up Menu

then Displays

01 aa == 0x20:rhank 0O
02 bl == 0x3F:rhank 0O

03 oo == 0xl10:rpage 0 | Figure 1-7c Select & Right-Click Register
04 dd == =i g [Value “ee” (without Register
== [Jxzb b Page), “Watch Dialog” Displays
2) From the Label Name box of ool Dislog. [X]
Watch Dialog window, select Label Name :

and double-click a variable label
name you wish to assign. Then
from the Label Types options,
Select the Varlable type tO be [Select or cancel the label by double click it]
displayed, i.e., Special Register, :a::L:i:'::egisteran__R]H
Control Register, RAM(Bank),

or Call ID RAM (see figure at
right).

& Control Register

© RAM([Bank) Bank |0 =

 Call ID RAM Block lll hd

g Cancel

Figure 1-7d eUIDE Watch Dialog

16 e Introduction EM78 Series IDE User’s Guide

Chapter 1

3) Click the OK button to add and display the selections into the Watch
window as shown below.

ﬁ hName Address Tvnpe Value
Fiv Oxz20 Bank (0} Oz00
BB Oz 3F Bank (0} Oz 3F
DD Dx06 Controli0) OxFF
oc 10 Hegictear({0) =07
TEE 0x06 Control (1) E
[0 [n Watehl 4 Wach2 3, Wakch3 [/ 4]

Figure 1-7e Selected Register Value “ee” Displayed in Watch Window

B Accessing “Debug” = “Add Label to Watch” Command from Menu Bar

1) Select a register from the
Editor window and from
Menu Bar, click Debug -
Add Label to Watch.

2) From the resulting Watch
Dialog, select and
double-click a label name
(see Figure 1-7d above).
Then from the Label Types
options, select the variable
type to be displayed, i.e.,
Special Register, Control
Register, RAM(Bank), or
Call ID RAM.

Debug
=l Go i
! Frec Run F10
£4 Reset F6
1 Step Into F7
P Step Ower Fg
(P Step Out Ctil+F7
M} Go To Cursar F4
Continue step into shift+F7

) Run from Selected Line
=n Stop

151 il atcl

Reset and Free Run
Reset and Go

eUIDE Menu Bar

3) Click the OK button to add and display the selections into the Watch
window as shown in Figure 1-7e above.

The variables displayed in the Label Name: list box of the Watch Dialog are the same
variables (without register page/ram bank/control register page) that you have
defined in the program code using the double—equal characters “==". Double-clicking a
variable name will add or clear the asterisk “*”. An asterisk prefixed to variable name
indicates that the variable is selected. Click OK button to add the selected variable to

the Watch window.

EM78 Series IDE User’s Guide

Introduction e 17

Chapter 1

B Accessing “Option” 2 “View” Command from Menu Bar
(Mass Selection by Labeling)

Variable without
page location data, ~
not labeled

1)

2)

From Menu Bar, click Option
—> View Setting (see figure at
right). From the resulting
View Setting dialog, select
the Add defined label to
watch automatically option
(see Figure 1-7i below).
There are three sorting options
in eUIDE Version 2.6 or later.
Labels added into Watch
window will be sorted
automatically according to the
selected sorting option
(sample figure shows “sort by
name” option selected). Then
Click OK button.

All variables with page
location data are automati-
cally formatted into labeled
format in the Editor window
as shown in the example
below.

Font...
Debug Option Setting
Durmp ASPCM

Environment setting lg

Customize...

Figure 1-7g Option Pull-Down Menu from

eUIDE Menu Bar

01 aa == 0xz0:rbank 0

02 bhh == 0x3F:rbank 0

03 cc == 0xl0:rpage 0

04 dd == riopage 0
== [0xzb

Figure 1-7i Labeled Format of Variables

with Page Location Data

. YaewiSethng, @

Revise Window Size

+ Base on Big window size when dock
" Base on Small window size when dock

File Name in Project Window
" File name with Path
@+ File Name

Show Line Numbers

& ON
C OFF

Tab Width: |4~
r y |
=

[v Add defined label to watch automatically

" Sort by Address
" Sort by Type
[Show "Unreferenced variable"

[~ Show defined label in Register Window
[~ Show Program Rom
OK | Cancel

Figure 1-7h eUIDE View Setting Dialog

18 e Introduction

EM78 Series IDE User’s Guide

Chapter 1

3) After code dump, the variables are automatically included in the Watch
window as illustrated in the sample below.

=
j Mame address Tvpe Walue
Ly Oxz20 Bank (0] O=00
BB 0xz3F Bank (0} Oxz3F
GE Ox=10 Register(0) A
oD Ox=06/ Contral(0) OxzFF
[+ [Watchl 4 Watchd » Watch3 / | KN

Figure 1-7j Labeled Register Values Display in Watch Window

NOTES

1. To remove a variable from the Watch window, select the variable and press
DELETE from the keyboard.

2 Ifthe “Add defined label to watch automatically” check box is selected, labels added
into Watch window will be sorted according to the selected sorting option (one of the
3 options).

3. The labeled variables are placed after the end of the existing Watch window
variables that were input manually using the two methods described earlier.

4. When executing “Project”>“Dump to ICE (F3)” command in “C” Mode, all global
labels will display from the Information sub-window of Output window (illustrated
below).

e First field is the type of variable and page number.
e Second field is the register or ROM'’s address of the variable.
e Third field is the name of the variable.

ﬁTm 2" Field 3" Field

fj ==========—==Gloha1 v 1able ==========\
REGISTER {Dj DzO0010karRegister]

I0 (03,0x0005,C0ONTROLO_OS

I0 (13),0x0006,CONTROL1_O6

BAME (0),0x0020,varBank20_0

BAME (0),0x003F,varBank3F_0

= BAME (0),0x0021,varBank21_0

= | [+ [\ Build) Information Find inFiles 7, Message A4 T

Figure 1-7k Global Variables Display from Information Sub-Window of Output Window

EM78 Series IDE User’s Guide Introduction e 19

Chapter 1

1.2.2.7 Data RAM Window

ﬁ 0t J2z 24567 e fa Ja]e|c|D]E|F |
BOO |FF FF FF [FF FF FF [FF FF FF FF FF FF [FF FF FF FF
BO 1 FF FF R/ 7= 7F FF FF FF FF FF FF FF FF FF FF
Boz [FF FF] DAY F FF FF FF FF FF FF FF FF FF FF
B0 |FF FF 1Y He F FF FF FF FF FF FF FF FF FF FF —
B0 4 |FF FF 1 Edit F |FF |FF [FF |FF FF FF FF FF FF FF
B0 5 |FF FF FETEFTEFTEF FF FF FF FF FF FF FF FF FF FF
||BO0 6 |FF FF |FF |FF |[FF FF FF FF |FF FF FF FF FF FF FF FF
£||B07 |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Figure 1-8 Data RAM Window with a Right-Clicked Binary Value

The Data RAM window is accessible only if RAM is available from the target
microcontroller currently in use. The Data RAM window shows the contents
of the data RAM. To change the data RAM values is the same as changing the
special register values described in Section 1.2.2.3, Special Register Window.

Note that when the Data RAM window is closed, it ceases to interact or read
the hardware contents.

1.2.2.8 LCD RAM Window

With the EM78 Series IC that supports LCD installed and in used, open the
LCD RAM window. Drag a corner to increase the size of the LCD RAM
window until the window looks as shown in the following figure.

Note that when the LCD RAM window is closed, it ceases to interact or read
the hardware contents.

|

50 [s1 [s2 [53 [s4 [s5 [s6 [s7 [s8 [s9 [sio [s11 [siz [s1s [s14 [s15 [s1s [s17 [sia [s19 [sao [s21 [s22 [523 [sae [ses [s26 [s27 [s28 [s29 [s30 [s31

o 00 0o o o o o o0 o o0 a0 o o o o o0 o o 0o 0 o o @ o o 0o o o o 0
a a i} a i}

oo
=)
=)

Data Pane

Graphic Pane

Control Pane

Pane Selection Bar

i} a
i} a a

o0
o0
[a o

Sslole
olole
o oo
o oo
o oo
o o o

a
a
a

o o o
GG

a a i} a 1} a a i} a a
a a a a i} a a i} 1} a a i} a a i} a a
a o) a o) a o) o a o) a o) a a

GG

L/ L/ N/ N/ L/ L/ L/ L/
R e e
B T B T B R B
fimport Graph | coM[0 =] ¢ SEG[0 = SEG Rangez[0 - [31 Load File
Set Mapping | Swap | Auto Increase:| 0 | cOM Range:[0 - [3 SaveFile

¥ Show Data [v Show Graph [Show Contro

Figure 1-9 LCD RAM Window

The LCD RAM window consisted of four sections as detailed below:
1) Data Pane

This pane displays the contents of the LCD RAM. “Cx” denotes the LCD
signal “COM x.” “Sx” denotes LCD signal “Segment x.”

To modify the contents of the LCD RAM elements, double click on the
selected element (grid block). The color of the selected element will change
from pink (1) to white (0) and vise-versa. Any related messages will be
shown in the Qutput window.

20 e Introduction

EM78 Series IDE User’s Guide

2) Graphic Pane
This pane displays the status of the loaded BMP graphic. If no BMP graphic

is loaded, no display is shown.

3) Control Pane
This pane controls the link between the BMP graphic and the data, as well as

setting the COM/SEG values for each graphic segment.

4) Pane Selection Bar

Chapter 1

You can select whether to display any or all of the three panes described

above.

B Loading Graphic Display and Segment Settings

The following is the step-by-step procedure on how to load the graphic display
and define their segment settings:

1)

2)

3)

4)

5)

From the Control Pane click Import Graph button to load
the BMP file. The program will automatically convert the
graphic file into black and white colors and determines
which black pixels are linked together to establish
segments.

Click Set Mapping button and the black segments fades to
gray to indicate that the system is now in Mapping Mode.
At the same time, the “Set Mapping” button label changes
to “Done.” Click the Done button only after all mapping
setting processes are completed.

Define COM/SEG values in the Control Pane and point at a
segment to apply the value. Observe the segment turns to

blue color. This indicates that the pointed segment is now
active.

com| 0 = sea| 0 =

Click on the active segment to enter the Control Panel
defined COM/SEG values into the segment. The example
shows the defined COM & SEG values are “0.”

Move the pointer away from the segment and the segment
turns into green. This indicates that the system has already
saved the COM/SEG values for the particular segment.

EM78 Series IDE User’s Guide

Introduction e 21

Chapter 1

6) Then move the pointer to other segments and repeat the
steps described above to redefine and change the
COMY/SEG values of the remaining segments.

An automatic and faster way of re-defining and setting of
COM/SEG values is explained in the next topic.

7) After all segment values are set, click Done (the original
Set Mapping) button. Then run the program to test the
settings, e.g., set some breakpoints and execute “GQO” or
use the “Continue step into.” View the results and check
for error.

B More Efficient Way of Re-Defining COM/SEG Values

i

0f2
0fs Of
oo
0 Of6
o5 0fF

The Step 6 above shows how to manually define and change the COM/SEG
values for each segment. This method is okay if there are only a few segments
involved. However, if a large number of segments are involved, the task
becomes complicated and time consuming. The following steps explain a more

efficient way of defining a large number of segment values:

1) From the Control Pane, define the SEG

Range as 0~1, and the COM Range as SEG Hange:l 0 - | 1
0~3. Consequently, the segment values COM Flange:lT) IT

will be set according to these defined
ranges.

2) Define COM/SEG values to “0” and Auto cgml 0 i’; SEGl 0 i’

Increase value to “I1. Swap | Auto Increase:|1_ :
3) Point to the segment where the o
COM/SEG value (0/0) is to be applied. ‘ ‘
Click and you should see the segment set S/
as “0/0.” ' .
of0 L

4) Observe that as soon as the “0/0” value is

N\

entered on the segment, the Control Pane CDMI 0 il." SEG| 1)7

SEG value is set to Auto-Increase by “1.”

Swap | Auto Increase:| [1

-
—

Note that only the value located at the
right box (SEG value in this case) will
change.

the COM/SEG value when setting “0/1”

5) Thus, there is no need to manually change ‘.

Only the value located J
in this box will change

value for the next segment. Just directly .‘
click on the segment and the next SEG 'ﬂ."ﬂ

value is Auto-Increased by “1.”

22 e Introduction

EM78 Series IDE User’s Guide

Chapter 1
6) Due to the fact that the SEG Range is set
at 0~1 (see Item 1 above), the next or 3rd
segment you click cannot increase its COMl 1 i’ f SEGI 0 i’
SEG value to “2.” Hence, the system "
automatically allocates the auto-increase Swap | Auto Increase:|1_ x
value of “1” to COM and sets the SEG
value back to “0.”
7) Consequently, all you need to do is to 3
continuously click on the remaining 3'"]2 uz'”
segments to set their COM/SEG values 1ib . 1
within the defined range. 0j0 Ofl

B Other Convenient Functions of the LCD RAM Window

In addition to the above, other convenient functions of the LCD RAM window
are also available and are describe below together with its respective notes:

1y

2)

3)

4)

If you wish to automatically apply the
Auto Increase value to COM (instead of

panN
sEG| 1 = ¢ com(3)=
SEG), click Swap button and observe SWE Auto Increase:| fl i

SEG & COM swaps positions.

Only the value located J

in this box will change

After clicking Swap, also observe that the system
has at the same time, switched the positions of all
values (from COM/SEG to SEG/COM) on the
previously set segments. Compare the figure at
right to the one in Item 7 above and see the
difference.

After setting all the relative values to affected
segments, it is recommended you click Save File
button to save the setting into LCD Simulator
Data File (*.LCD). Otherwise, when you want to
use the program the next time, you will need to
define and set the values again.

Since the LCD Simulator Data File already
includes the imported graphic files, you do not
have to click the Import Graphics button the
next time you want to use the saved *.LCD file.
Just click Load File button to load the data file.

113
0f3 142
0f2
o 1A
of0 140

Sawve File

Load File

EM78 Series IDE User’s Guide

Introduction e 23

Chapter 1

5) The program determines which black pixels
are linked together to establish a segment.

However, when 2 or more separate segments 0o
constitute a non-separable object or character
(e.g., 1,]), all integral segments should be 00

assigned with the same COM/SEG value.
Otherwise, the program will assume that
there are 2 or more separate segments.

6) As stated above, the program determines
which black pixels are linked together to
establish a segment. However, when 2 or
more segments which are ought to be O
separated and set with different COM/SEG
values, are somehow joint together at one
point, such graphic file should be modified to
break up their link. Otherwise, the program
will incorrectly assume that there is only one
single segment.

1.2.2.9 EEPROM Window

Click Refresh button to (%]
readi:]e“‘)ffellug‘éfgggﬁ Refresh [0 1 [2 [3J4a]s[eJrJaefafafefcp]E]r [@
gora data oo FF |FF |FF |FF |FF |EF |FF |55 |55 |55 |55 |55 |55 |55 |55 |55

10 5E |55 [55 |55 [55 |55 [55 |55 [55 |55 [55 |56 |55 |56 [58 |55

20 §55|55(55033133133133133133133133133|33|33(33|33

Click row header to
disable and exclude row 1
data from updating & | : 0|00 |00 (00| 00|00 |00 00|00
reading. Click again to 50 R D TR U SR C T

3133|33

e = grn D g = grem § — L} \j
restore 60 33|33 (33]33 (3332 (3333332333 (33|33 (333233
70 3% o3 53 |33 38|33 (53|33 5% |33 (53 33 p53 | 33 (51 |33
a0 el e e e e e

Figure 1-10 EEPROM Window Showing Rows 30 & 40 Disabled

The EEPROM window is accessible only if EEPROM is available from the
target microcontroller currently in use. The EEPROM window shows the
contents of the data EEPROM.

Note that when the EEPROM window is closed, it ceases to interact or read the
hardware contents.

24 e Introduction EM78 Series IDE User’s Guide

Chapter 1

Reading all EEPROM data is time consuming. It needs almost 8 seconds to
read 256 bytes. To minimize reading time, you can disable the EEPROM data
that you do not need to read by clicking the row header of each row that you do
not wish to read. The disabled rows will have their data dimmed and are
excluded from updating process. To restore updating to the disabled rows, click
the row header. If you want to update all EEPROM data, just click Refresh
button on top-left of the window. All data are then updated.

1.2.2.10 Output Window

g
i

5 [] Build), Tnformstion . Find inFiles 5 Messsge), Program Rom / [4] | 3
Figure 1-11a Output Window

The Output window displays messages indicating the results (including errors)
of the project compiling just performed, such as assembler, linker, trace log
history, and debugging. The window consists of four tab sub-windows, namely;
Build, Information, Find in Files, Message, and Program Rom, where:

Build - displays assembler/linker related messages and trace logs.
Double click on the error message to link to the
corresponding program text line where the source of error
occurs. The pertinent source file is automatically opened in
the Editor window if it is not currently active.

Information — displays debugging related ROM and RAM Bank memory
usage information.

Find in Files — allows you to find identical string (selected from an active
file) from other active or inactive files in your folder. Lines
containing the identical string will display on the Output
window complete with its source filename and directory.
See example below.

Message — displays the debugging related changes to the LCD RAM
window.

Program Rom — displays the contents of program ROM after dump.

EM78 Series IDE User’s Guide Introduction e 25

Chapter 1

B Executing Find Command from Output Window

Right-click to display pop-up menu
from a sub-window, and click “Find” AN
A

ooozo
ooo31
o003z
ooo3z
oooz4

Lo lx

OX1F oA AR EL T & EIBR FL0VG 694569, DT (52)
0%10 DB AR ST B BB FL0V 56590569, DT (53)
0xil o AR AR & EIER FL0VG 694569, DT (54)
0x12 D\ EEAFR L BB F 10,5 690562, DT (55)

o AR AR & EIBR FL0VG 694569, DT (56)

0x13

Capy Ctr+C
Save
Save Al

Build » Information

Find in Files » Message [4 [

Figure 1-11b Finding a String from any of the Output Sub-Windows

The steps for initiating the Find dialog from Output window:

1.

From one of the Output sub-windows, right-click within the widow. A

command popup menu then displays.

. From the pop-up menu, click Find command.

. The following Find dialog then displays.

Find.... =

Find : | |__Find Next |

™ Match whole word only | direction Cancel |

[Match case
| Mowve with code line

" up * down

Figure 1-11¢ Find Dialog from Output Window

Where:

Find: Enter the word string you want to search

Find Next: Click this button to search the next matching string
(Hotkey: Alt + N)

Cancel: Quit search and exit from the dialog

Direction Up: Search forward (Hotkey: Alt + U)
Direction Down: Search backward (Hotkey: Alt + D)

Match whole word only: Enable check box to find and match whole word
only. (Hotkey: Alt + W)

Match case: Select this option to match the string in lowercase or
uppercase characters exactly as they appear.
(Hotkey: Alt + C)

26 e Introduction

EM78 Series IDE User’s Guide

fm

1

Chapter 1

Move with code line: When this check box is enabled, the Output window
will indicate the search matched line in the trace log. At
the same time, the corresponding trace log mark code
line in the Editor window is highlighted
(Hotkey: Alt + M)

NOTE
The above hotkeys works only when the Find dialog is active.
When Find dialog is inactive, and the eUIDE is active, use Ctrl + R to find forward
and Ctrl + Q to find backward.

1.2.3 eUIDE Menu Bar
See Chapter 2 for details.

1.2.4 ToolBar

2 3 45 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21

=

HE $B@E «- MEse @ HHE 4% 4% =7

Figure 1-12a eUIDE Main Window (Standard) Toolbar

w

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

i
B
B
&2
=
m‘_]
o)
o
3
&
%
1
4L

Figure 1-12b eUIDE Main Window (Build) Toolbar

1.2.4.1 Toolbar Icons and its Functions and Hotkeys
Corresponding hot key is enclosed in parenthesis:

1 = | Open: open an existing file (Ctrl + O)

2 I | Save: save current active document (Ctrl + S)

3 & | Save All: save all document

4 & | Cut: remove the selected string to clipboard (Shift + Del)
5 Copy: copy the selected string to clipboard (Ctrl + C)

6 Paste: paste the string from clipboard (Ctrl + V)

7 v v| Undo: cancel the last editing action (Alt + Backspace)

8 Redo: cancel the last “undo” i.e., restore the “undone” editing
i action ((Ctrl +Y))

EM78 Series IDE User’s Guide Introduction e 27

Chapter 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

|

=

=]

g5

SRR Sk

P

'
—

e,

{f

¥

%ﬂ

Open/Hide Workspace: display/hide toggle for Project window

Open/Hide Output: display/hide toggle for Qutput window
Only Source Window: maximize editor window (Ctrl +Shift +S)

Find: find string from within the entire active file (Ctrl + F)
Find Next: find string from cursor position toward the end of file
(Ctrl + N)

Find Previous: find string from cursor position toward the
beginning of file (Ctrl + P)

Find in Files: find string from inactive files
Toggle Bookmark: apply/remove bookmark on the line where
cursor is positioned (Ctrl + F2)

Go to Next Bookmark: jump to the next bookmark from cursor
position toward the end of file

Go to Previous Bookmark: jump to the next bookmark from
cursor position toward the beginning of file
(Ctrl + F2)

Clear All Bookmarks: clear all bookmarks (Ctrl + Shift + F2)
Print: print the active file

About: about eUIDE version and other information

Assemble (or Compile in C mode): assemble (or Compile) the
active file in the Editor window (Alt + F7)

Build: assemble (or compile in C mode)the modified files in the
project and link object files (Shift+ Alt + F9)

Rebuild All: assemble (or compile in C mode) all files in the
project and link object files (Alt + F9)

Go: auto dump and execute program with the effect of the
breakpoints (F5)

Free Run: auto dump and execute program with the breakpoints
ignored (F10)

Reset: reset the ICE (F6)

Step Into: auto dump and execute program step by step
including subroutines (F7)

Step Over: auto dump and execute program step by step
excluding the subroutines (F8)

Step Out: auto dump and execute program until exit from
subroutines (Ctrl + F7)

28 e Introduction

EM78 Series IDE User’s Guide

% Chapter 1

Go to Cursor: auto dump and execute program, then stop at the
31 |} . o . .
cursor position while ignoring the breakpoint (F4)
32 [| Run from Selected Line: Start running command from the line
it where the cursor is located
33 || Toggle Breakpoint: insert/remove toggle for breakpoints (F9)
34 |dm| Clear All Breakpoints: remove all breakpoints
& Trace Back: Trace the executed trace log backward from the last
35 executed address to the address before the current
executed address.
Trace Forth: Retrace the trace log address forward (top to
36 | bottom) or at reverse direction of Trace Back
command
37 |zi| Stop: Stop Free Run or Go without break point.

B Chinese Characters Code Conversion Hotkeys
Applicable to eUIDE source files written and used in Chinese speaking areas.

1) Ctrl + Alt + Shift +G: Convert Traditional Chinese (Big5) to Simplified
Chinese (GB)

2) Ctrl + Alt + Shift +B: Convert Simplified Chinese (GB) to Traditional
Chinese (Big5)

3) Ctrl + Alt + Shift +Z: Undo the last conversion

1.2.4.2 Document Bar

] EM78P447_EXT INT.C | 1] Em78:dd7uch |

Figure 1-13 eUIDE Main Window Document Bar

The Document bar displays the file icons representing each of the opened files
in the Editor window. Click the icon of the pertinent file that you wish to
activate and place in front of the Editor window to perform editing.
Highlighted filename is the active file (function is similar with taskbar buttons
under Windows).

Double clicking on opened file icon in the Document bar will close the active
document.

EM78 Series IDE User’s Guide Introduction e 29

Chapter 1 %

1.2.4.3 Status Bar

Keyboard mode

Cursor position
| T T]
|Ready | | Lng Col5 | DOS | [OVR[| [CAP [NUM SCRL A|
Running indicatorJ Text file OS formatJ I— R/W flag

Figure 1-14 eUIDE Main Window Status Bar

A eUIDE running indicator will be shown in the Status bar while your project is
being compiled.
The Cursor position indicates the cursor location within the text Editor

window.

R/W flag indicates the active file Read/Write status. If Read only, “Read” will
display, otherwise the field is empty.
Keyboard mode displays the status of the following keyboard keys:

m Insert key — OVR is dimmed when overtype mode is off, highlighted
when on.

m Caps Lock key — CAP is dimmed when uppercase character mode is off,
highlighted when on.

® Num Lock key — NUM is dimmed when the numeric keypad calculator
mode is off, highlighted when on.

m Scroll Lock key — SCRL is dimmed when cursor control mode is off,
highlighted when on.

30 e Introduction EM78 Series IDE User’s Guide

Chapter 2

fm

Chapter 2
The eUIDE Commands

2.1 eUIDE Menu Bar and its Menu Commands

9 Ele Edit View Project Debug Tool Option IDE Window Help

2.1.1 File Menu

e,
& Open...
Close

& save
Save As, .,
& Save Al

Ctrl4+C

Ctrl4+5

Dpen Project
Save Project
Close Project

& Print...
Print Preyiew
Print Setup...

Fecent Projects r

Exit

Figure 2-2 File Menu

Figure 2-1 eUIDE Menu Bar

New...

Open...

Close

Save
Save As

Save All

Open/Save/Close
Project

Print

Print Preview

Print Setup...

Recent Files

Recent Projects

Exit

Create a new project or source
file (see Section 3.4.1 for details)

Open an existing document or
project

Close the active document or
project

Save current active document

Save current active document
with new filename

Save all opened documents

Open/Save/Close the active
project

Print active file

Preview printed format of active
file

Define printer settings

View the record of the recently
opened file(s)

View the record of the recently
opened project

Exit from eUIDE Program

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 31

Chapter 2

2.1.2 Edit Menu

Select Al Ctrl+a
Go to Line... Ctrl+G
Eormation Selection AlR+F3

@& Find... Ctrl+F
#4 Find Mext Crm
% Find Previous Chl+P
[q Find in Files
Replace. .. Ctrl+H
BookMarks v

Index BookMarks v
Go To Index BookMarks

-

Figure 2-3a Edit Menu

Find Previous

Find in Files

Replace...

Bookmarks

A Toggle Bookmark
“% Previous Bookmark
% MNext Bookmark

%% Clear All Bookmarks
Figure 2-3b Bookmarks Sub-Menu

Index Bookmarks

Go to Index
Bookmarks

! Supported in C Project only
2 submenu from Bookmarks command

Undo
Redo
Cut/Copy/Paste

Select ALL
Go to Line...
Formation
Selection

Find...

Find Next

Cancel the last editing action
Repeat the last editing action

Same as standard clipboard
function

Select all contents of the active
window

Move cursor to the defined line
number within the active window

Formats the selection using smart
indent settings’

Find the defined string in the active
window

Find the defined string toward the
bottom of the active window

Find the defined string toward the top of the active

window

Find the defined string in the active and non-active

files

Same as standard “find and replace” editing functions

Bookmark the line at cursor position

Toggle’ Bookmark the line at cursor position

Previous’ Jump to next bookmark from cursor
position toward the end of file

Next’ Jump to next bookmark from cursor
position toward the beginning of file

Clear Al Clear all bookmarks

Clear all bookmarks or assign an index value (0~9) to
the bookmarks in order to easily access (jump) them
using the “Go to Index Bookmarks” command

below

Jump to bookmark with “x” index value

32 ¢ 2BThe eUIDE Commands

EM78 Series IDE User's Guide

Chapter 2

2.1.2.1 Executing Find Command from Edit Menu

1) From menu bar, click Edit - Find.
Alternatively, you can press the shortcut keys
CTRL +F.

Pazte CHrl+y

2) From the resulting dialog, enter the string you
want to find and its parameters.

Select all Ctrl+a
Go to Line... Ctrl+G
Formation Selection Alt+F2
Find what: C ~| | Fi | = i
e ,E Direction J B AR Cohe |
[~ Match whole word only - Up & Down Cancel ﬂ-::a: Find Mext CHlen
[Match case % Find Previous Ctr+p
(@ Find in Files
Figure 2-4b Find Dialog from Edith Menu Replace. .. Cirl+H
Where: EookMarks *
. . Index BookMarks r
Find what: Enter the word string you want to o Ta T e s !
search _ .
Figure 2-4a Find Command
Find Next: Click this button to search the next from Edit Menu
matching string. Matched string is
highlighted

Match whole word only: Select this option to search string that matches the
string as a whole word. For example, if you want to search for
“abc,” the function will NOT pick out string that has
additional characters (including spaces) before or after the
defined string, such as “123abc” or “abced”.

Match case: Select this option to match the string in lowercase or
uppercase characters exactly as they appear.

Direction Up: Search toward the top of the document

Direction Down: Search toward the bottom of the document

Cancel: Quit search and exit from the dialog
. B 44 Ttestt : =101 <] | [JEETE i
The ﬁgure at rlght ShOWS R10 Dxl0:rpage 0 ﬂ‘ 1 2010 R10 == Oxl0:rpsy
R11 == Oxll:rpage O 1 00000 oO1o R10 == Oxl0:rp
an example where the z 2011 RIL == Oxllizpa
;include "447test.h" Z 00000 D010 R11 == Oxll:rpd
. org Dzfff 3 |
Find command found e 3 include "447¢d
. . . org 0xz00 5 org O0xfff '
s1: 6 OOFFF 1400 jmp =1 |
and highlights the string et : sl !
. . clr Ox12 § 00000 sl: 1
which matches with the s2: 9 00000 00D clr 0xll !
« I . inc Uxéé - 10 00001 00D2 clr Oxl2 !
Y o 00 11 00002 s2: |
SearCh mOV Strlng' mov a,@0=55 12 00002 0551 inc Oxll !
mov a,@0x55 13 00003 1855 mov a,@0x55 !
mov &,@0x55 14 00004 1855 mov a,@0x55 |
mov &,@0x55 15 00005 1855 mov a,@0x255 i
inc Oz12 16 0000& 1855 mov a,@0x55 '
jmp s2 17 00007 1855 mov a,@0x55 |
15 00008 0552 inc 0zl12 !
””” x| 02 jmp s2 !
|
Find what: [mov Find Next i
I~ Match whole word only ~Direction __ Cancel | i
[~ Match case © Up & Down Warning(s), 0 User Message-l
|

Figure 2-4c An Example of Highlighted Matched String

EM78 Series IDE User’s Guide 2BThe eUIDE Commands e 33

%ﬂ

2.1.2.2 Executing Find Command with Shortcut Hotkeys

1) From the Find dialog, enter the string you want to search.
2) To search upward, press the shortcut keys CTRL + P.
3) To search downward, press the shortcut keys CTRL + N.

2.1.3 View Menu

T, Project
v Spedid Register
v General Registers (Bank)
v CallStack Data
Data Ram
LD Data

Project

Special Registers

General Registers

Show/hide Project window

Show/hide Special Register
window

Show/hide General Register

B ot (Bank) (Bank) window
v fia Call Stack Data Show/hide Call Stack window
Assernbly Code
ot Orly Source Widow _ Cul#Shitss Data RAM Show/hide Data RAM window
—— . (if supported by the target chip)
v Stats Bar LCD Data Show/hide LCD Data window
il (if supported by the target chip)
Figure 2-5 View M : -
'gure ew Menu Output Show/hide Output window
Watch Show/hide Watch window

Assembly Code'

Only Source Window

Toolbars

Show/hide Assembly Code in/from Editor window.

After first dump to ICE (F3), enable this checkbox to
display assembly code with C source

Maximize the Editor window

Show/hide Standard, Build, or both toolbars

Status Bar Show/hide Status bar

Document Bar Show/hide Document bar

' Supported in C Project only
34 ¢ 2BThe eUIDE Commands

EM78 Series IDE User's Guide

Chapter 2

2.1.4 Project Menu

Project Wizard

Mew, .,

Open Project
Save Project
Close Project

Add Files to Project...
Delete files from project...

& fssermble AlE+FT
% puild Shift+alt+Fg
Rebuild Al Alt+Fo
Durnp to ICE F2
Trace Log F2

Figure 2-6 Project Menu

Delete Files from
Project...

Assemble
(or Compile under C
Project)

Build

Rebuild All

Dump to ICE
Trace Log

Dump code over 64K
to sram'

" This command applies to EM78815 only.

Project Wizard Create a new project with step-by-
step dialog (see Section 3.4.1 for
details)

Create a new project with New
dialog (see Section 3.4.2 for

details)

New...

Open Project Open an existing project

Save Project Save the active project together

with all related files
Close Project

Add Files to
Project...

Close the active Project window

Add the existing source file into
project

Remove source file from project

Assemble (or compile) the active file window. If
errors occur during assembly (or compiling) time,
error messages will be shown in the Output window.
Otherwise, “0 errors, 0 warnings, 0 users” will be
displayed.

Assemble (or compile) the files that have been modi-
fied, and link them to the currently opened project.

Assemble (or compile) all files regardless of having
been modified or not, and link them to the currently
opened project.

Dump the program code to ICE

Refers to available history only when either Go, Free
Run, or Go To Cursor command from the Debug
menu is executed. The maximum length of trace log
is 8K words.

NOTE

With LPT connection, the trace log will record the
unexecuted instruction next to the last executed one.

With USB connection, the last executed instruction will

be recorded.

Dump the page range program code of over 64K to the
SRAM. The SRAM must be plugged into the ICE
hardware when executing this command. See
example in the following figure.

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 35

Chapter 2

2.1.4.1 Executing “Dump code over 64K to sram” Command

When the Dump code over 64K to sram command is executed, the following
dialog displays. Enter “64” into the Start Page box and “127” into the End

Page box.

Start Page : |64

End Page :

127

............................

Cancel ‘

2.1.5 Debug Menu

) Step Into
o Step Over
B Step Out
M} Go To Cursor
Continue step into
7)) Run from Selected Line
=n Stop

Add Label to Watch
Reset and Free Run
Reset and Go

Rurn From

+M Toggle Breakpoint
Show &l Bredkpoints
@&y Clear Al Breakpoints

<8 Trace Back
= Trace Forth

FS

F10

F&

F7

Fa
Ctrl+F7
F4
Shift+F7

Fa
Ctri+-alk+FS
Ctr+F2

Ctrl+I
Crl+K

Figure 2-8 Debug Menu

Free Run

Reset

Step Into

Step Over

Figure 2-7 “Dump code over 64K to sram” Dialog

Run program starting from
the current program counter
until a breakpoint is matched

Run program starting from
the current program counter
until the OK button of the
Stop Running dialog is
clicked

Perform ICE reset (register
contents are displayed with
initial values)

Execute the instructions
step-by -step (with register
contents updated
simultaneously)

Execute instructions as Step
Into (see above), but the
CALL instruction will
execute as “step over”

36 ¢ 2BThe eUIDE Commands

EM78 Series IDE User's Guide

Chapter 2

Step Out

Go to Cursor

Continue step into

Run from Selected Line

Stop

Add Label to Watch

Reset and Free Run

Reset and Go

Run From

Toggle Breakpoint
Show All Breakpoints

Clear All Breakpoints

Address Breakpoint

Clear All Address Breakpoints
Value Breakpoint
Trace Back

Trace Forth

Exit CALL subroutines while executing Step
Into in CALL subroutines

Run program starting from the current program
counter up to the location where the cursor is
anchored (applies to ICE debug mode only)

Perform Step into command function
non-stop

Start running command from the line where the
cursor is located

Stop Free Run or Go command execution
without matching breakpoint

Add or delete variables from the Watch
window. See details in Section 1.2.2.6, Watch
Window.

Reset hardware (ICE), and then execute the
Free Run command function

Reset hardware (ICE), and then execute the Go
command function

See Section 2.1.5.2 below for the resulting
sub-menu and its functions

Set or remove a breakpoint

Show all breakpoints setup data in the Qutput
window

Clear all breakpoints

Define addresses for the breakpoints. See
Section 2.1.5.3 below for the resulting
sub-menu and its functions

Clear all address breakpoints
TCC, R3 value breakpoint for PC Peripheral IC

Trace the executed trace log backward from the
last executed address to the address before the
current executed address. The highlighted
address moves backward step- by-step each
time the command is clicked.

Retrace the trace log address forward (top to
bottom) or at reverse direction of Trace Back
command. Applicable only after Trace Back
command is performed.

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 37

C

hapter 2

2.1.5.1 “Run From” Command Sub

Where:

Initial with 8K Step log:

Program is kept running starting from the
initial address until a breakpoint is
matched. Only the last 8K steps of execu-
tion history are stored in the trace buffer.

Current PC with 8K Step log:

-Menu Function Description

Initial with 8k step log
CurrentPC with Bk step log
Initial with gk-4k step log
CurrentPC with 4k-4k step log

Figure 2-9 Run From Command
Sub-Menu

Program is kept running starting from the current program counter until a
breakpoint is matched. Only the last 8K steps of execution history are stored in

the trace buffer.
Initial with 4K-4K log:

Program is kept running starting from the initial address until a breakpoint is
matched. Only the last 8K steps of execution history (4K steps before and 4K
steps after the matched breakpoint) are stored in the trace buffer.

Current PC with 4K-4K log:

Program is kept running starting from the current program counter until a
breakpoint is matched. Only the last 8K steps of execution history (4K steps
before and 4K steps after the matched breakpoint) are stored in the trace buffer.

2.15.2

The breakpoint set up
method in this dialog is to
use an address breakpoint
that contradicts with the
source level breakpoint;
1.e., the source level
breakpoint will be
ineffective if an address
breakpoint is set at the
same time. Therefore, if
you select the “Address
breakpoint not active”
option, the source level
breakpoint will become
effective.

“Address Breakpoint” Dialog Function Description

O —
bl e i aynine P,

+ Address breakpoint not active
" Breakpoint group

" Breakpoint or

" Breakpoint nest

(0X09,0%1)
[DX11 0X20,0X01)

(011 ,0X1)[012 ,01)(0X13,0X1)
(011 ,0%1)[0X20 ,0x1)

(0X11 0X1)(0X20 0X1)

oKk Delete |

Cancel
kp kpoint nest syntax:

[0xAAAA 0xXAAAA ... 0xPP] [0XAAAS OXAAAA ... 0xPP]...
[Address Address...,Counterj{Address Address...Counter]...

Br int or and Br

Breakpoint group syntax:
[0xLLLL 0xHHHH,0xPP] [DXLLLL 0XHHHH,0x<PF]...
[Low address High Address,Counter]...

Figure 2-10 Address Breakpoint Dialog from
Address Break Point Command

38 ¢ 2BThe eUIDE Commands

EM78 Series IDE User’'s Guide

Chapter 2

There are three types of address breakpoints: Group, OR, and Nest, which are
contradictory to each other. However, the setup syntax for OR and Nest is the
same, but different from Group.

Breakpoint Group: 63 groups are available at most and each group has Start

Breakpoint OR:

Breakpoint Nest:

Address, End Address, and Pass Count. When any
instruction is executed between Start Address and End
Address, the Pass Count is deducted by “1.” When the
Pass Count is equal to “0,” the executing program is
stopped at once. Each of the 63 groups is independent
from each other.

63 groups are available at most and each group is
composed of several addresses and a Pass Count. When
an address is executed within a group, Pass Count is
deducted by “1.” When the Pass Count is equal to “0,” a
breakpoint occurs. Each of the 63 groups is independent
from each other.

Assign some address location as groups and specify those
groups as a Breakpoint Nest. The outer (the later
specified) group must be satisfied first before the inner
group can take effect.

The Breakpoint Nest and breakpoints of program line are
contradictory. In other words, if Breakpoint Nest is
active, then the program line breakpoints become
inactive, and vise-versa.

e Breakpoint Nest Setup

1) With reference to Figure 2-10 above, enable the
Breakpoint nest checkbox.

2) Input breakpoint address. If the address breakpoint is
for (0x10 0x20 0x30, 0x55) (0x15 0x100 0x170, 0x10),
address location 0x10, 0x20, & 0x30 are assigned to
the same group (Group 1). A breakpoint is attached to
this group, and the associated Pass Count of this
breakpoint is 0x55.

Address locations 0x15, 0x100, & 0x170 are assigned
to another group (Group 2). A breakpoint is attached
to this group, and the associated Pass Count of this
breakpoint is 0x10.

3) Click OK button.

4) Execute Go (F5) command from Debug menu.

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 39

Chapter 2

5) If the Group 2 must be satisfied (Pass Count
decrements to “0”), then the Group 1 will take effect
(decrease its Pass Count on meeting the breakpoint
condition). As soon as all the groups are satisfied, the
execution is stopped at the breakpoint.

B Using “Address Break Point” in Defining a More Complex Breakpoints

The Address Break

Point command allows you to directly set a more complex

breakpoints setup which can terminate at an address location.

1) Open the Address Breakpoint dialog (Debug = Address Break Point) or
apply shortcut keys ALT + A.

2) The Address Br

Function options —t=—

Enter the address
breakpoint in the text box
in accordance with the
format specified below

All the address

—

eakpoint dialog displays as shown in the following figure.

+ Address breakpoint not active

" Breakpoint group
" Breakpoint or

" Breakpoint nest

breakpoints you have
entered are displayed here

The address breakpoint __|
format references

OK [Delete | Cancel

Breakpoint or and Breakpoint nest syntax:
[D=AAAA DxAAAA . 0xPP) [OXAAAA OXAAAA ... ,0xPF]...
[Address Address...,Counterj{Address Address....Counter]...
Breakpoint group syntax:
[OxLLLL DxHHHH,D=PP] [0XLLLL 0XHHHH,0x<PF]...
[Low_address High_Address,Counter]...

Figure 2-11a Address Breakpoint Dialog with Descriptions of
their Components

3) Select an address breakpoint option (Breakpoint group, Breakpoint or, or
Breakpoint nest) as follows:

e Breakpoint group - Select this option to set a group of breakpoints

a) Select the Breakpoint group option. = Breakpoint gru-upé

within a range of address locations with a counter
number.

40 ¢ 2BThe eUIDE Commands

EM78 Series IDE User's Guide

i

b) Specify a breakpoint group consisting of a
start address, end address, and a breakpoint

Chapter 2

|(0X01 0x04,0%01)|

counter in the text box. A breakpoint will be set to all addresses within
the specified start and end address range. The figure example below
shows “(0X01 0X04, 0X01),” which means breakpoints are set to all
addresses between “0X01” and “0x04” and break counter is set at “1,”
thereby allowing a termination break on one passing.

¢) Click OK button to save the settings. You
should see the group breakpoints indicated in

1
2

the Editor window or as shown in the example 3

figure at right.

d) Click Go command (Debug = Go) to see the
steps and result of the code execution as shown

in the figure at right.

4

5
@5
®7
®5
®9

OrE O=fff

orsg 0z00
=l:

nop

nop

nop

nop

jmp sl

org Ozfff
jmp =1
org 0z00
=1l:

nop

noE

nop
jmp =1

e Breakpoint or - Select this option to set breakpoints at one or more
address locations with a counter number.

a) Select the Breakpoint or option.

& Breakpoint or

b) Enter the breakpoint address(es) and counter

in the format- “breakpointAddressi

|(000 0X02 0X04,0X01)

breakpointAddress2 ..., counter”. This

means that a breakpoint will be set at locations 0x01, 0x02, and 0x04 with

the counter set to “1”.

¢) Click OK button to save the settings. You
should see the group breakpoints indicated
in the Editor window or as shown in the
example figure at right.

oreg Oxfff
c{;sh

org 0xz00

=1:
@nop
nop
@rnop

nop

®imp s1

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 41

Chapter 2

d) Click Go command (Debug = Go) to see
the steps and result of the code execution as
shown in the figure at right.

i

org Ozfff
Jjmp =1
org O0z00
sl:

®no

2

®nop
nop

®imp =1

e Breakpoint nest Select this option to set nested breakpoints consis-
ting of groups of address locations with each group
assigned with a counter number.

a) Select the Breakpoint nest option.

b) Enter the breakpoint address(es) and a countei
in the format of — “breakpointAddress1
breakpointAddress2 ..., counter”. The figure

&+ Breakpoint nest

[(0x00,001)(0%03,0%02)

at right shows an example with “(0X00, 0X01) (0X03, 0X02).” This
means that the program will run address 0x03 twice, run address 0x00

only once and then terminate.

c¢) Click OK button to save the settings. You
should see the breakpoints indicated in the
Editor window or as shown in the figure at
right.

d) Click Go command (Debug = Go) to see
the steps and result of the code execution as
shown in the figure at right..

arg Ozfff
:{;h

orsg 0z00

=1:
@nop

nop

nop
@nop

Jjmp sl

org Ozfff
Jjmp =1
org O0=z00
=1l:

®no

> I
nop

®nop
Jjmp =1

42 ¢ 2BThe eUIDE Commands EM78 Series IDE User's Guide

Chapter 2

You can also enter the " Breakpoint nest
specific or range of
address breakpoint(s)
you want to delete here

. You can only set breakpoints after performing dump action. If you

. Breakpoints (solid blue dot) created through the Address

. As the Address Breakpoints dialog created blue

NOTES

try to set breakpoint without dumping, a pop-up message will
display to prompt you to execute dump action.

Break Point command (as explained above) are independent from the breakpoints
(solid red dot) created individually by double-clicking on the

pointed address (or by pressing F9). Since they do not UTE Uxfff
conflict with each other, the blue and red address =

breakpoints can co-exist at the same time and at the same Drﬁ_’ =00
address location. However, the blue breakpoints has the i::l:p
priority over the red ones when Go command is executed. @rnop

Hence, any existing solid red dot breakpoints are ignored COnop

nop

breakpoints has the priority over the individually-created @imp s1

red breakpoints, the solid red dots turns into hollow red
circle when both types of breakpoints occupy the same address. Once the blue
address breakpoints are cleared, the hollow red circle becomes solid again. The red
address breakpoints are applicable only when the blue ones are all cleared.

. To clear all blue breakpoints, do either of the following:

e From the menu, click Debug = Clear All Address Break Point
® Press the shortcut keys CTRL + ATL + A

. To clear individual or a range of blue breakpoints, do the following:

a) From the menu, click Debug - Address Break Point (or press Alt+A)

b) From the resulting Address Breakpoint dialog (figure below), which displays all
the existing blue breakpoints, select the specific or range of breakpoint(s) to
delete from the dialog.

c) Click Delete button to remove the selected breakpoint.

Address Breakpoint x|

¢ Address breakpoint not active
@ Breakpoint group
¢ Breakpoint or

—— (015 0X15,1)

(0X16 0X16,1]
(0X15 0X16,1]

0K I Delete Cancel

Breakpoint or and Breakpoint nest syntax:

[DxAAAA DxAAAA0xPP] [0XAAAA DXAAAA .. ,DxPF]...
[Address Address...,Counter](Address Address...Counter]...

Breakpoint group syntax:
[0xLLLL 0xHHHH,0xPP] [0XLLLL 0XHHHH,DxPF)...
[Low_address High_Address.Counter]...

Figure 2-11b Address Breakpoint Dialog with Selected Individual
or a Range of Blue Breakpoints to be Cleared

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 43

C

hapter 2

2.1.6 Tool Menu

Connect Ctrl+Shift+C

Chieck ICE mernory
Get checksum from project

Piggy back Hi Lo format
Clear all output mapping line

Cornpute execution time ¥

v Speed Up Debug

Figure 2-12 Tool Menu

Clear all output mapping line

Get TBL code position
Piggy back MIX2 format

Compute Execution Time

Move data from file to sram

Speed Up Debug

i

Set proper connection between
target IC & connecting port

Connect

Check ICE
Memory

Get Checksum
from Project

Check available memory from
ICE

Obtain checksum from the
compiled program

Create a MIX file to write
piggybacked into EEPROM

Piggy back
MIX format

Piggy back Hi
Lo format

Create a couple of files with
extension names “Hi” and
“Lo,” which are used to write
piggybacked into EEPROM

Clear program mapping lines from output
window

Obtain TBL code position
Applicable to EM78813 & EM78815 only.

If an original 8bit is used to piggyback and fit
into 16bit, the piggybacked high byte in 8bit
will become low byte in piggybacked 16bit.

Calculate the execution time between two
breakpoints. See next section below.

Applicable only to EM78815. See details in the
sub-section below (Section 2.1.6.2)

For C Compiler use only

2.1.6.1 Computing Execution Time

Follow the steps below in calculating execution instruction time of ICE:

1) Click Compute
Execution Time
command, then the
following dialog
displays. Enter the
required ICE
frequency and
instruction period and
click OK button.

Dialog

.

X
+ Enable ¢ Disable

Frequency of ICE: |4.000000 MHz

2 Clocks(for UICE]

This frequency and Instruction period are used for calculating

clocks and timing while execution.

Compute executime time function :

Instruction Period of ICE:

Figure 2-13a Compute Execution Time Setup Dialog

44 ¢ 2BThe eUIDE Commands

EM78 Series IDE User's Guide

Chapter 2

2) Execute the Project 2 Trace Log command (or F2). The trace buffer info
is then displayed in the Message tab sub-window of Output window.

ﬁ Address Code Disassembler File Name (Line)
0oooo 1809 MOV A, BOX9 D ERAAR SN @ BB F10M5 694 569,
goooi 0903 BC 0x3,0%7 D EERAR SN @ B F 1005694 569,
0oooz 0ES3 BS 0%3,0%6 D: N EERAR AT R EIERF 100,569,569,
00003 o047 MOV 0X7, 4 D: AR SN @ BB F 10N, 5690 569,
pooona on4g Mow 0x%E, & D: AR & R P10 5694 569,
0o0os 0049 MOV 0X9, 4 D EERAR SN @ RIBR F 1005694 565,
0oooe 0903 BC 0x3, 087 D ERRAR SN @ BB F 10N, 5691 569,
0oon7 0983 BC 0%3,0%6 D: ORI AR L B BB F 1005 694 569
{ = i

Find in Files » Message 4 Program Fom

of Output Window

3) Then look for the execution time result from Information tab sub-window
of Output window.

x|
]

Fregquency 4.000000 MH=
Instruction Cycles 10

1]]_\ Build }\In:furmnﬁun;{" Find in Filez :I\Messa\ge ;\ Program Eom f

Figure 2-13c Execution Time Result Displayed from Information Tab Sub-Window
of Output Window

Cre

2.1.6.2 Moving Data from File to SRAM (Applicable to EM78815
only)

The eUIDE supports moving data to external 512K byte SRAM board which
allows the use external SRAM as a replacement for the slower flash. With this
new feature, you can move data from binary file to external SRAM and use
external SRAM to develop program with program size of over 64K words.

With your hardware properly connected and ready to debug your program,
access the data from external memory. Now, replace external flash ram with
external SRAM. Then move of data from binary file to external SRAM and
dump code to external SRAM as further discussed in the following pages.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands e 45

Chapter 2

B Move Data from Binary File to External SRAM

1) Execute Debug > Reset (F6).
IMPORTANT!
You need to initialize the ICE environment and eUIDE by executing reset (F6)
before moving binary data into external SRAM. Otherwise, data transfer to SRAM
will fail. However, if you have just performed a reset after connecting the ICE or is
already in the process of debugging the program, you may skip Reset.
2) Click Tool = Move data from file 77 x|
to SRAM command.
))) & SRAM &
3) When the resulting dialog (right _
ﬁgure) appears, browse for the Data Begin Address: |131072
Binary file name you want to Length 131012
operate and enter the Data Begin Extemal Code Size:
AddreSS and Length lntO thelr I Checking after dumping
respective text boxes. B E e
Be sure to read the notes at the [DAWice Testi#15F ang2\Bigh.bin| =
bottom of dialog, and then press OK | Note:
1.The unit of Begin Address and Length is byte.
button to move your data' YOU may 2. The Data Begin Address is reference to Dx0 of
enable the Checking after dumping | extemal memory.
checkbox to verify data after ok | At
ﬁnlsh}ng the process. %en a'byte n Figure 2-14 "Move data from file to
error is encountered, verification SRAM” Dialog
process is aborted.
The External-Code-Size box shows how many bytes your program code is
over 64K words. So allow your Data Begin Address to be larger than
External-Code-Size.
The maximum Data Begin Address is 524,288 (512K byte) and the Length
is 262,144(256K byte). So if the data you want to move from binary file to
external SRAM is over 262,144 byte (256K byte), you have to partition
your binary file into two files and move your data twice.
Example:

Assuming you have a 512K byte external SRAM, a binary file with filename
“Big5.bin,” and its size is 393,216 byte (384K byte), and want to move all the
contents of “Big5.bin” into external SRAM from the Data Begin Address
131,072. The file, being over 256K byte, is partitioned into two files; e.g.,
“Big51.bin” and “Big52.bin” with sizes of 262,144 byte (256K byte) byte and
131,072 byte (128K byte) respectively.

46 ¢ 2BThe eUIDE Commands EM78 Series IDE User's Guide

Chapter 2

First, move “Big51.bin” data into external SRAM by setting Data Begin
Address at 131,072, Length at 262,144, and the “Big51.bin” folder as Binary
file name. The moved data will be located from address 131,072 to address
393,215.

When “Big51.bin” data transfer is completed, then process to move “Big52.bin”
into external SRAM by setting Data Begin Address as 393,216, Length at
131,072, and the “Big51.bin” folder as Binary file name.. The moved data will
be located from address 393,072 to address 524,287.

It is highly recommended to complete moving partitioned data in one
successive process.

B Dump Code to External SRAM:

If your program code is over 64K words, click Project = Dump to ICE (F3) to
dump program code to ICE. eUIDE will process and check code that is under
64K words. If your program code is less than 64K words, eUIDE will not
process dumping to external SRAM as discussed in Section 2.1.7.4.

If your code is over 64K words, eUIDE will dump the code into external
SRAM. It usually takes about 45 seconds to completely dump the code of 64K
words. Actual dumping time is dependent on the code size over and above the
64K words. You can enable the External Code-checking checkbox in
Environment setting Dialog (see Section 2.1.7.4) to check dumping process
and result.

It is highly recommended to enable the External Code-checking option during
the first dumping and disable it when repeating to dump the same file to save
another about 40 seconds.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands e 47

Chapter 2

2.1.7 Option Menu

ICE Code Setting

Font...
Debug Cption Setting
Durnp ASPCM

Wiew Setting
Erwironment setting
ICT

Customize. ..

Figure 2-15 Option Menu

View Setting

Environment setting

ICT

Customize...

ICE Code Setting Set code option for the selected
microcontroller

Font... Define font for Editor windows
(fonts for other windows are fixed)

Debug Option Set debugger variables options in
Setting ()¢ dialog shown in Figure 2-16
below

Dump ASPCM Dump to Data ROM
Accelerate Applies only to USB ICE. Read

Reading Registers rcgisters quickly when frequency

is over 2MHz as explained in
Section 2.1.7.2 below

Set the eUIDE window view variables as explained in
Section 2.1.7.3 below

Set eUIDE environment variable, e.g., whether list/
map file is to be created or not, and the number of
Editor windows to display as explained in Section
2.1.7.4 below

Execute ICE test

Customize toolbars, menus, and accelerators. See
Section 2.1.7.5 below for details.

2.1.7.1 Debug Option Setting

Set the debugger variables options with the following dialog. The options are
divided into four blocks as illustrated below.

Dialog

[¥ Dumping code and checking
" Interrupt disable after hreak

Default breakpoint counter

Default break point counter[0-255]: |1

If default walue 0 then show counter dialog else not.

¥ Show source code in trace log
[¥ Step into macro instruction when Debugging

T R — |

Figure 2-16 Debug Option Setting Command Dialog

48 ¢ 2BThe eUIDE Commands

EM78 Series IDE User's Guide

Chapter 2

b)

Dumping codes and checking: eUIDE will check the hardware memory
before dumping codes.

Interrupt disabled after break: Interrupt is disabled when a breakpoint is
encountered. It is used to avoid any interrupt from occurring when screen is
updating as TCC2, COUNTER1, and COUNTER?2 will keep on working
after program is stopped. Therefore, the disabled interrupt must remain
active; otherwise users cannot debug the program.

Default breakpoint counter: See Section 3.9 of Chapter 5, Debugging a
Project for details.

Show source code in trace log: In the Output window, the trace log is set
by default to display the disassembler contents only. If this function is
enabled, the address source level breakpoint generated by the trace log
address will also appear in the Output window.

Step into macro instruction when Debugging: When this option is
enabled, click Debug = SteplInto (F7) to run the program instructions
including the macro step-by-step. To run the macro code in the background,
click StepOver (F8). As a new feature, you can now disable this checkbox
to run the macro in the background, regardless of whether you click
StepInto (F7) or StepOver (F8). Please remember that the instruction line
that is currently being executed will stop at the macro address location
(shaded in green). This location will point to the first line of the macro code.
Click Steplnto (F7) to execute the first macro instruction and then its stop at
the next macro instruction (shaded in green again).

Example:

test macro
nop

nop

endm

org 0x0
jmp main
main:

nop

A SR BN e

test

[
e

nop
11. jmp $

Per above code example, if the program execution stops at Line 8 (shaded in
green on screen), click StepInto (F7) to execute Line 8 and then execution
stops at Line 9. Note that in the previous eUIDE version, it stops at Line 2
of the macro.

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 49

Chapter 2

As Line 9 is actually linked to Line 2 address, clicking StepInto (F7) will
execute the code at Line 2 and stops at Line 3. If you click StepOver (F8),
the program executes the complete macro instructions (Line 2 & Line 3) and
stops at Line 10.

2.1.7.2 Accelerate Reading Registers

Accelerate Reading Registers X

Accelerate Heading Registers
" Enable [instruction clock >= 2 MIPS]

&+ Disable [instruction clock € 2 MIPS]

Figure 2-17 Accelerate Reading Registers Command Dialog

When you use USB ICE and the frequency is over 2 MHz, you can enable this
capability. But it is not 100% stable. If you see some abnormal appearances,
try to disable this option.

NOTE

If you select IRC when you set the code option, eUIDE may enable this option
automatically according to the chosen frequency.

2.1.7.3 View Setting flzy Ypiiinyg B

. . Revise Window Size
Set the eUIDE window view T)
i+ Base on Big window size when dock

variables or propertles. " Base on Small window size when dock

File Name in Project Window
" File name with Path
f* File Name

Show Line Numbers
* 0N
" QFF

Tab Width: |4 T

[~ Show Ham Bank Inversely
[~ Show Data Ram Inversely

v Add defined label to watch automatically
* Sort by Name

" Sort by Address
" Sort by Type
[~ Show "Unreferenced variable"

[Show defined label in Register Window

Cancel

Figure 2-18a View Setting Command Dialog

[~ Show Program Rom

50 ¢ 2BThe eUIDE Commands EM78 Series IDE User's Guide

Chapter 2

a) File Name in Project Window:

Projec =l =
=1 EM78569--test apj == EM78569--D-\est2\569\test apj
=13 Bouce Files =423 Sorce Files
[F] DMest\5691569 4t
= Header Files
=25 List Files
560 lst (2] Ditest2i56kest It
5] Map Files £ Map Files
{3 Library Files =3 Library Files

Figure 2-18b View Setting Showing Differences between “File Name” (Left) vs. “File name
with Path” (Right) Options

b) Show Line Numbers:

1 org 0z0 oryg Oz0

o =R sl

3 mov a,@0xzFF mov a,@0xFF
4 moy Oz 20,3 moy OxzZ20,a

5 moy &, @0xz0 mov &, @0z0

b moyy 0xZ20,a Moy EIXEEI,al

Figure 2-18c View Setting Showing Differences between “Column On” (Left) vs.
“Column Off” (Right) Options

c) Tab Width: customize tab size.

d) Add defined label to watch automatically: (Enable after Dump)
When checkbox is enabled, definite variables are automatically appended
with rpage/rbank/iopage when displayed in Watch Window.

0] RegisterRS == Oz05:rpage 1 j R
02 org 0x0 KCC |FF [CONT |BF
R0 |3F |RO 16,13
o0 Ril |FF |RI/ICC [4E
06 oo 5 R1Z |EY |RZEC |0000
07 o i R1Z |06 |R3 0001-1011 e Page? Pogel
08 mov .a R4 6B R4 a001-1100
(it] mov ,a RI5 |0E |RS w0 RS 00 [R5 00 RS |00 |C5 |EO
10 mov .a Ri6 |38 |RS 0 R6 00 [R6 DD R6 |00 C6 FF C6 |0
n mov -4 RI7 49 R7 FF R |40 R7 |00 C7 FF C7 |
}g ﬁgz 2 Ri6 |26 |R8 F RE [i] RG (00 CB FF CB O
14 ol = R19 |10 |RO W REGISTI| 72 RO (00 CO FF CO O
15 i a RiA |56 [R& |18 R4 |FF |R& 00 RA |00 ch [0
16 mov o RIE 40 [RB |00 RE |00 [RE 00 RB |00 CB FF CB O
17 mov 8 RIC |12 [RC |00 RC |DE|RC 00 CC FF CC [0
18 mov ,a RID |41 [RD |00 RD |EO |RD 00 D [0
13 mov .a RIE |AZ |RE on RE 00 CE 00
20 mov -3 RIF |45 |RE |00 CF m
21 mov .8
22 jm
23 s2: 47 =l
o el Name Address | Type [value [
5 ine 022 REGISTERRS %05 Register(1) Ox0D
27 inc 0x23

Figure 2-18d View Setting Showing the Appended Definite Variable “rpage” Displayed
in the Watch Window

¢) Show "Unreferenced variable': when enabled, the build assemble code
will check and determine whether the variables were utilized or not.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands e 51

Chapter 2 %

f) Show defined label in Register Window: (Enable after Dump)

When enabled, Register name are displayed as label name in the Register
Window. If the label name length is over 6 characters, Register name will
display the first six characters, and tooltip displays complete name.

When disabled, the Register name will appear as initial name in the Register
Window.

g) Show program Rom: show the program code in the Program Rom
sub-window of Qutput window.

2.1.7.4 Environment Setting

Set the eUIDE environment Favironment seting %]
variables e.g., whether LIST/ % Create List File
MAP file is to be created or [Creats MapFile
not, and the number of Editor
windows to display. Recent File List :
Recent Project List : =

a) Create List file: If selected, S

the LIST file is created after Following are for EM78815

the related project is r

assembled. The LIST file r

will include line number, v

address, program code, and

source file. Cancel

b) Create MAP file: If
enabled, the related LIST
file is created after linking to a project. The MAP file will include public
symbol name and address.

Figure 2-19 Environment Setting Command Dialog

c) Recent File List: The number of recently closed filenames to be saved in the
ICE. The maximum number of sub-editor windows that can be
accommodated is 10.

d) Recent Project List: The number of recently closed project names to be
saved in the ICE. The maximum number of sub-editor windows that can be
accommodated is 10.

¢) Auto Dump Over 64K: For EM78815 only. If checkbox is enabled, all
program codes are dumped into the hardware.

f) External Code checking: For EM78815 only. If selected, the process of
dumping program (or data) to external SRAM is monitored and checked.

g) Show Trace Log Under 64K: For EM78815 only. If enabled, eUIDE will
check the 64K program code when Go, Free Run, or Go To Cursor
command from Debug menu is executed. The maximum length of trace log
is 8K words.

52 ¢ 2BThe eUIDE Commands EM78 Series IDE User's Guide

2.1.7.5 Customize...

The Customize dialog
displays with four tabs as
shown at right. The following
describes the function of each
tab:

a) Commands tab:
Select this tab to display all
available commands under
a selected category. Then
drag and drop a command
into toolbars, menu bar, or

Chapter 2

Customize
Commands | Toolbars | Kevbosrd | Options |
Cornmands:
Hew
= Open...
Close
[Save
i Save As. .
Hel,
Mi.l? T cmn d & Save AL

Diescription:

Close

into a drop-down command Figure 2-20a Customize Command Dialog Showing

menu (from menu bar). To

“‘Command” Tab

restore default settings, go to Toolbar tab and click Reset All.

b) Toolbars tab:
The Toolbars tab allows
you to enable/disable the
Build and Standard
toolbars but not the Menu
Bar. You can however,
Reset/Reset All all
toolbars to restore the
default settings of a
particular or all toolbars.
Furthermore, you can
create your own new
unique toolbar which you
can later Rename or

Customize

Commands Teelbars | Keyboard | Options |

Toolbars:

FiBuild
[wikdenn Bar
(w3 tandard

x|

Bemt |
Rewmt 41l |

New ..

Eename... |

[~ Show text labels

Close

“Toolbar” Tab

Figure 2-20b Customize Command Dialog Showing

Delete from this tab. You can also add/remove text labels to the toolbar
buttons by clicking on the Show text labels check box.

EM78 Series IDE User’s Guide

2BThe eUIDE Commands e 53

c) Keyboard tab: x|
The Keyboard tab allows Commands | Toolbars Keybostd | Options |
you to create/remove the Category Swewile | Lodtonls |
shortcut keys for the S
commands of a selected CTIR—— - |
command category. The Rermove
procedure is explained Fress New Shortout Key:
belOW: pen an existing document ICtd+B

i Azsigned to:

M Creating a shortcut key: [Unsssigned]
After selecting a Category Clos

and Commands option
from their respective
boxes, enter your custom
shortcut key into the Press New Shortcut Key box. eUIDE will auto-detect
and determine whether the new shortcut key has already been assigned or not.
If it has already been assigned, the pertinent command name (with which the
shortcut key is currently assigned) will display under Assigned to: field, and
you need to directly enter another shortcut key. Otherwise, [Unassigned]
will display. Then click Assign button to apply.

Figure 2-20c Customize Command Dialog Showing
“Keyboard” Tab

M Removing an existing shortcut key:

After selecting a Category and Commands option from their respective
boxes, the corresponding command shortcut key (if available) will appear in
the Current Keys box. Select the shortcut key you want to remove and click
Remove button to delete.

M Restoring all shortcut keys to their default settings:

Click Reset All button to reset all command shortcut keys back to the eUIDE
default settings.

& Saving/Loading settings:

To save your custom shortcut keys for future use, e.g., when upgrading
eUIDE to a new version, click Save to File button to store the settings to a
file (with a “.KEY” file extension). After installing a new version of eUIDE,
you can simply click Load from file button to re-apply your custom shortcut
keys into the new eUIDE.

54 ¢ 2BThe eUIDE Commands EM78 Series IDE User's Guide

Chapter 2

& Option tab

x|

Commands | Toolbars | Kevbosrd Options I

Toolbar
W Show ScreenTips on toolbers

[V Show shortcut kevs in ScreenTips
[~ Laxge Icons
o Lol 200

Clos

Figure 2-20d Customize Command Dialog Showing “Option” Tab

Use the Option tab to set the size of the toolbar buttons and specify whether to
display screen tips and shortcut keys (where applicable) when pointing at the
button. You can also set to display the eUIDE sub-windows to look like that of
Windows 2000.

2.1.8 Window Menu

e Windowe New Window Open a new (or split) Editor
B Cascade window .
Tile Vertical Cascade Rearrange all Editor window
o _ active files so that they will
B Tie Harizortal appear overlapping in sequence
Arrange Icons with their respective title bar
Close all ﬁllly visible
B¢ windows. .. Tile Vertical Rearrange all opened Editor

windows vertically

Figure 2-21 ,\V,\,/g,],gow Tile Horizontal Rearrange all opened Editor

windows horizontally

Arrange Icons Arrange all opened file filenames in a single line
formation (minimized into multiple file icons) at the
bottom of the Editor window.

NOTE

This command is effective only after clicking the
Minimized button ([=I]) at the right end of the eUIDE
window Menu bar.

Close All Close all opened files
Windows... Show Select Window Dialog

EM78 Series IDE User’s Guide 2BThe eUIDE Commands e 55

Chapter 2

2.1.9 Help Menu

User Manual 3
Check Mew Version...

? About...
Register ELAM

Figure 2-22a Help Menu

User Manual Open the eUIDE User’s Manual

Check New Check new version of eUIDE from
Version... ELAN

About... Shows the current version of eUIDE
program and other information

including a “read me” file on recent changes of the eUIDE

About...

Register ELAN

Update USB Glue
Firmware

Shows the current version of eUIDE program and other
information including a “ReadMe” file on recent
changes of the eUIDE

About eUIDE 3

ELAN C Compiler for ICE
View Yhat's New
eUIDE Version 1.00.12

Copyright 2009 ELAN Microelectronics Inc
All rights reserved .

Web: http:}fwww.emec.com.tw

Figure 2-22b About Command Dialog

On-line registration with ELAN
Update USB UICE firmware if necessary

56 ¢ 2BThe eUIDE Commands

EM78 Series IDE User’'s Guide

% Chapter 3

Chapter 3
Getting Started

3.1 Overview

3.1.1 System Requirements
The EM78 Series eUIDE requires a host that meets the following
specifications:

IBM PC (Pentium 100 or higher is recommended) or compatible computers
Win2000, WinME, NT, or WinXP and Vista-32

At least 40 MB (or more) free hard disk space

At least 256MB of RAM. 512MB or more is recommended

Mouse and USB connectors are highly recommended

3.1.2 Software Installation

NOTE

B Please note that eUIDE can only be installed in the predefined directory
C:\EMC\eUIDE. This restriction is necessary to prevent assigning an installation
path that may contain space character that could cause serious error during
compilation.

B The file paths (*.apj, *.cpj, *.dt, *.c, *.h, and *.inc) must NOT contain any
space. Any space in the path will cause error during compilation.

The eUIDE compiler and ICE driver are is included in eUIDE program
package. When installing the eUIDE, the compiler is also automatically
installed.

If this is your first time to install the eUIDE program, you need to reboot your
computer after eUIDE installation is completed because of the printer port
driver (DLPortIO). If you use USB ICE under Windows 9X, you also need to
reboot.

If it is not the first time to install eUIDE, the setup program will uninstall the
previous installation then install the new one.

During installing, users cannot change the default install path.

When the operating system is searching the USB ICE hardware, please make
sure the power of ICE is set to ON. You can see the ELAN USB ICE through
the OS Device Manager if the driver is installed and the ICE is connected
correctly.

EM78 Series IDE User’s Guide 4BGetting Started e 57

Chapter 3

..E..[.;; Device Manager

=10l |

oo wew ||+ = | Bm |2 &

=

E‘&P Llnwersal Serial Bus contrallers

Fs

-

Figure 3-1 OS Device Manager Confirming ICE Installation

3.1.3 ANSI Compatibility

Compliance with the ANSI standard is limited to free-standing C to
accommodate the unique design characteristics of the EM78 Series

microcontrollers.

3.2 Hardware Power-up

With the ICE properly connected to target board, PC, and power source, switch
on ICE power and observe its red power LED lights up. If the target board
derives its power from ICE, the yellow LED lights up as well.

Then launch your eUIDE IDE software when ICE and target board power-up is

confirmed to

function normally.

3.3 Starting the eUIDE Program

To start eUIDE Program, click on the eUIDE icon from desktop or from
Windows Start menu. When starting from the Start menu, click Programs, then

look for eUIDE group and click on eUIDE icon.

3.3.1 Connect Dialog

Select MCU —

Select
connecting mode

Check ICE memory __ |
condition option

Cniiigie

[X]

y
Filter /

Micro Controller™ [EM78PA68N[ICEA68]

\\

Connecting Port ~ UsB

O Wait Times |

\-F Check ICE Memory

i

Long

| 7

[ex: p153)

' L\
" UQ‘

Cancel

Figure 3-2 eUIDE Program Connect Dialog

MCU selection
filter

LPT Port address
setup

Printer port
speed

58 e 4BGetting Started

EM78 Series IDE User’s Guide

Chapter 3

Once the program is started, the main window of the program will initially
display the Connect dialog (figure above) to prompt you to set the proper
connection between your existing target microcontroller and connecting port.

Where:

Filter: Key-in the last 3-digits of the desired target IC, for example; “159.” The
Micro Controller combo box will display all EM78 series ICs having “159 as
its last part number digits, thus, speeding up the search for your target IC.

Micro Controller: The IC part number shown on the combo box is one of the
EM78 series. Select your target IC by clicking on the combo box arrow.

Connecting Port: Select the proper connecting port, LPT or USB for your ICE.
If USB ICE is not installed, you cannot select the USB option as the option will
be disabled. However, if the USB option is disabled and you have the USB ICE
connected with PC, go to your OS Device Manager and try the following steps:

1) Turn off the ICE

2) Disconnect the USB cable

3) Turn on the ICE

4) Reconnect the USB cable

5) Then check if the USB option is enabled

LPT Port Address: The system will automatically detect the printer port

address (default is 378H) which is already connected with the hardware. After
the connection is successful, eUIDE will also diagnose the hardware right away.

I/0 Wait Times: It depicts the I/O response speed. Increase the value for
slower speed and decrease for faster speed. Usually, the bigger the value, the
better is the stability.

Check ICE Memory: You may enable this check box to check the ICE
memory condition.

Long Delay Time: When you are unable to connect your computer to ICE,
enable this check box. This will allow a longer handshaking time between your
computer and ICE. Click OK button when done.

3.3.1.1 Reconnection

If a new ICE replaces the current one, it is necessary to reconnect it with PC.
Click Tool = Connect to reconnect. The Connect dialog (Figure 3-2 above)
will pop-out again. It will take a longer waiting time to establish communi-
cation between the PC and hardware during reconnection under the same
hardware environment.

EM78 Series IDE User’s Guide 4BGetting Started e 59

Chapter 3 %

3.3.2 Code Option Dialog

[aed i ERC PS5A08C0 acts P55 [ERC PR5SASC0 acts OHC0
" [RC PA5S0EC0 acts P55 & IRC PASA0EC0 acts OSC0
){o‘ MCIRC act P55 i MCIRC st 0SC0
. LET (Low Crystald [HET {High Crystaly
ENWLTE 10 Enable T Disable
CLES IC Zelocks & delncks
CYES [1eyele (0 2oyl
Target Power (0 using ICE [E
Cancel |

Figure 3-3 eUIDE Code Option Dialog

The Code Option dialog is displayed next. Check all items to confirm the
actual status of the ICE and make appropriate changes as required. Then click
OK button. You need to get acquainted with MCU or ICE specifications to able
to select code option correctly. Otherwise, proper connection cannot be achieve
with ICE. You can enlarge or reduce the dialog’s size by dragging its edges.
This dialog applies to both USB and printer port modes.

NOTE
Not all EM78 Series MCU requires the Code Option setting.

3.3.3 Accelerate Reading Registers Dialog

If you are using USB ICE, the Accelerate Reading Registers Dialog dialog
will pop up after setting code option. Refer to Section 2.1.7.2, Accelerate
Reading Registers for details.

3.4 Create a New Project

3.4.1 Using the Project Wizard (Project - Project
Wizard)

The project wizard consists of several dialogs which will walk you through a

step-by-step setting up of your project.

Step1 — Select a controller

Step2 — Select controller Code Option

Step3 — Create a new project: Set Project Name and Type

Step4 — Add a new file or an existing file to your project

StepS — Summary

60 e 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

Step 1 - Select a controller

Select a controller for your project from the list, the click Next button.

Prgleer pediol iy DS EB

Step 1: Select a controller

Controller | ROM | RAM | Stack | Page | LCALLATMP |
EM72P141(CE143) Kxl2 488 9 N N
EM7EP142(1CEZ41N) xlz BE 8 N ¥
EM7EP143(CE147) Wxls B0 8 N ¥
EM7EP1534 (ICE1535) 1Kxl3 338 5 N N

[EM7EF1538(ICEL534) Exl3| 33| 5 | N |

s EM72P154N (ICE159) 1Kxl2 488 5 N N
C'lﬁkat&'fnbs”é{ﬁ?, EM7P 1541 ICE150) Kxl2 488 5 N n

ort s EM72F150EL (ICE456E) 438 5 N N =
and exit Wizard EM78P1 560 (ICE456E) 498 5 N]
EM72P157H (ICE456E) 438 5 N N
After setup is done, | | EM78P15GN(ICE159) 5 N N
click this button to || EMZEP1E3NICEI63N) 5 N v
EM7SF 164N (ICE 1641 5 N ¥
go to nextstep | | gy7apa 10N ICEZLON) 8 N ¥
TrRAIODOION T T2 MR (=) L1 I

Click this button
to return to =
previous step

Cancel

Figure 3-4a Project Wizard Step 1 of 5 Dialog

Step 2 - Set controller Code Option
If the controller does not require Code Option setup, skip this dialog.

Frofeet Sl Dol o S a

Step 2: Select EM78P1535[ICE1535) Code Option

set up Time (T2 s (" 4.5 ms
[288 ms (o 18 ms
CLOCK] A [4
OEC (S Low Crystal (o High Crvstal
& External RC = Intermnal RC
REZETENLELE & Enable (w Diwhble
Target Power (Belf (o Tsing ICE
WATCHDOG] Enable [Dizble
RC OUT (Pad (o ORCO

« Back Cancel

Figure 3-4b Project Wizard Step 2 of 5 Dialog

EM78 Series IDE User’s Guide 4BGetting Started o 61

Chapter 3

Step 3 - Create a new project: Set Project Name and Type
[E RN A S o R HE

Selecting Create a project | Step 3: Create a new project: Set Project Name and Type
with file option and clicking

on Next button will directly The controller iz EM7EP 249N TCE 34910,
jump to the next step
(Step 4), Add a new file or Project Setting
an existing file to your Project Mame : :
project (see below).) Creste an empty project
LamTest . : —
) 1 reate & noest wath. fie
) Location
Selecting Create an
empty project option and CAEM7ETestIC153) [:]
clicking on Next button will
directly jump to Summary Project Type Library Cutput
dialog (Step 5)
(®) Assembler (%) Wormal (*eds)
Oc () Library { *1ib)
[<Back | [{“Wewt: | [Cangel |

Figure 3-4c Project Wizard Step 3 of 5 Dialog

Enter a project name, browse or create folder to save the new project, and the
project type (ASM or C) for your new project.

B To set the directory:

o Type in the path to an existing directory or to a new directory, and click
the Next button. You will be prompted directly to Step 4 to enter the
directory.

o Click “...” to browse to an existing directory or to one level above where
you wish to place a new directory. Otherwise, complete the path if you
are creating a new directory and then click Next. You will be prompted
to create the directory if it does not exist.

B To set Project Type:
o Click ASM option button to create an Assembly language project

o Click C option button to create a C language project

B To set Library Output:

o Select Normal (*.cds) from Library Output pane to create a general
project. It will generate objective (*.bbj) file, list (*.Ist) file, binary
(*.cds) file after project is created (with Build command).

o Select Library (*.lib) to create a library project. It will generate
objective (*.bbj) file, list (*.Ist) file, library (*.lib) file after project is
created (with Build command).

62 e 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

Step 4 - Add a New File or an Existing File to Your Project

Frgldet i sinl Siagline g

(%) Create a new file
File Navie:

Testl 53
File Location:

CAEM 8 TestIC153
() Select an existing file

Select File:

Step 4: Add a new file or an existing file to your project

@]

Cancel l

Figure 3-4d Project Wizard Step 4 of 5 Dialog

B To “Create” a new empty file:

Enable the Create a new file button and type a filename in the File Name text
box. A file (with the defined filename) will be created and save in the folder
location as defined in the File Location text box.

B To Select an existing file:

If you already have an
existing file that you would
like to add to the new project,
click the Select an existing
File button. The Insert Files
into Project dialog (figure at
right) will open. The default
folder will display in the File
Location text box as shown in
the Figure 3-4d above.

F

Insert Files into Project

Look in: |) EM78Test\C153\ e c¥ BB~
[FlcTest CTest.cpj CTest_bp.bbj CTest,
) CTest CTest.i CTest_bp.dt [Z) PrOM
CTest CTestlst CTest_bp.lst test2,
E] CTest CTest.map CTest_bp_rmk.dt test2,
CTest.cds CTest.o CTest_new.lst test,
CTest.cml CTest.pji CTest_new_rmk.dt test2,

< b
File name: |
Fles cfye: [T I ~| Cancd

Figure 3-4e Insert Files into Project Dialog

EM78 Series IDE User’s Guide

4BGetting Started e 63

Chapter 3

Step 5 - Summary
Vil e il H x|

Summary

The Mireo Controller 1z : ER{78F1 538

The Project Folder is : COAEM T8 TestIC 1530

The Project Type iz ASM

The Project Name iz : LzmTestap

The File Folder iz - CAEMTS Tes’t".IC153".

The File Name iz : Testl 53 dt

Create generally project.

Tt will generate objective (¥ bbj) file, list (* 1zt) file, binary (*cds) file after build project.

(Bt) [CEan) [Gl)

Figure 3-4f Project Wizard Summary Dialog

Double-check the summarized setup information on the Summary dialog. If
further correction is needed, click Back button to return to the particular dialog
you need to change the setting. Otherwise, click Finish button to complete the
new project creation.

3.4.2 Using the New Command (File/Project = New...)

To create a new project with the New... command from the Project menu,
follow the following steps:

1. From the Menu bar, click File or Project and choose New... command from
the resulting pull down menu (see figure at right).

2. The New dialog under Projects tab (shown below) for will then display after
clicking the New... command from the File menu or Project menu.

64 ¢ 4BGetting Started EM78 Series IDE User’s Guide

3
5\ ;'I':'_'.r
6~ ¢ ez New File | ml”“
7\ Project Hame
CAEM70 TestIC153 E]
8 Dol I
\\QJM?SPIB CEL53) Nommal*cds)
TOPISANACELSS || Oc O Library (*1b) |
EM7EPISAINQCELSS)
EM7EP156EL(ICE56E)
EM7EP156H (CE456E)
EM7EP157H(ICE456E)
EM7EP159(ICEI 59)
9 ——1 | EM78PIGIN(CELGIN)

Figure 3-5¢c New Dialog Showing Project Tab for Creating New

Project

3. Select Projects tab from the NEW dialog

Chapter 3

& Oper... Ctrl+0

Close

Figure 3-5a File Menu

raject

Project wizard

Open Project

Save Project
Close Project

Figure 3-5b Project Menu

4. Assign a name for the new project in the Project Name text box (suffix
“.ap)” for ASM mode or “.cpj” for C mode will auto-append to filename).

5. Locate the folder where you want to store the new project. You may use the
Browse icon to find the appropriate folder.

6. Select the library output of your project (Normal Project or Library

Project.)

7. Then select the proper type of your project (C for C Compiler Project or
Assembler for Assembly Project.

8. Select the target microcontroller for your project from the Micro

Controller list box.

9. Click OK button after confirming all your selection and inputs.

The new project is then created with the defined project name and micro-
controller you have selected is displayed at the top of the Project window.

x|

Target_~{

Microcontroller

- ource Files

=424 ListFiles

EM7856 st.apj 2

testdt

L4753 Header Files

(3] testlst
LA Map Files
£ Library Files

Project Filename
— (*.apj for ASM mode or
*.cpj for C mode)

Figure 3-5d Project Window Showing Target IC & Project Filename

EM78 Series IDE User’s Guide

4BGetting Started e 65

Chapter 3

i

3.5 Add and Remove Source Files from/to Project

You can either insert existing source files into the new or existing project, or
create new ones with eUIDE text Editor and insert them into the project.

3.5.1 Create and Add a New Source File for the Project

If your source file is yet to be created, you can take advantage of the New dialog
(by clicking NEW...command from the File or Project menu) to create your
new source file and use the eUIDE text editor to compose its content.

1. From the New dialog, click the Create a New File tab and select the type of
source file you want to create from the EMC Source File list box, i.e., *.dt
(default for Asm mode or *.c for C mode) for assembly file; *.h for header

file.

ELAN Header File(™h)
ELAN Source File(”.asm)
ELAN Header File{®inc)
ELAN Header File"ma
ELAN Header File(™.de#
Rl AN Header File[S4é6g) File Name:

[~ Empty File

Create a New File | Projects] /
ELAN Source File{*dt) 12 Tiew file to project

/ﬁ‘estcode
U]

File: Location:

|F:"-.TEM PeUIDEVT.ONCA68\

—

_—5

/‘

oK ? Cancel ‘

Figure 3-6a New Dialog Showing Create a New File Tab for Creating a New Source File

2. Select Add to Project check box (default) if you want to automatically add
the new file into your project. Otherwise clear the check box.

3. Assign a filename for the new source file in the File Name text box.

4. Locate the folder where you want to store the new source file in your disk.
You may use the Browse icon to find the appropriate folder.

5. Click OK button after confirming your inputs. You will be prompted to
start writing the newly defined source file in the Editor window.

66 e 4BGetting Started

EM78 Series IDE User’s Guide

Chapter 3

NOTE
1. Do not write code over 512 lines, especially in C mode, or serious error could occur.

2. In C mode, we recommend you enable the Add new file to project check box” to
add the first C file in a new project. eUIDE supplies “main()” function, interrupt save
procedure, interrupt service routine frame, restore code in the file to develop project,
and write code on interrupt easily(see figure below). Interrupt is discussed in detail

in Section 6.10, “Interrupt Routine.” Interrupt program is very easy to develop under
TCC2.

3. Remember that C compiler can only accept one “main()” function in a project. If you
want to add another new file after the first main file was added, you can enable the
Empty File check box to add an empty file

07 wroid main()

02 {

03 _asm{MOV A,@0xz10
04 CONTW

05 3

06 1

o7

08 void _intcall interrupt({void) @ int

09 {

10

11 77 Write vour code (inline assembly or C) here
12

13 }

14

15 void _intecall interrupt_livoid) @ 0x08:leow_int O
16 {

17 _asm{PAGE @0=z0}

18 }

Figure 3-6b Typical Interrupt Function

3.5.2 Add Existing Source Files to the New Project

If your source file is ready, you can immediately insert it into your new project.

1. From the Menu bar, click on Project > Add Files to Project. The Insert
Files into Project dialog is then displayed.

ME'I.I'I.I'. 20 Do Bilazinig Brgjae: \..; EB
Open BB | 569 = ck E-
Save 560_bp_rmk.dt
=] 569 _new _rmk.dt
Close [560_mk dt
1 testeode asm
&dd Files to Project. .,
Delete files from project. .. BREHW: 550 ot
TEFEBANTY: |Source Files (% A1 azm) - BIiH
g pesemble Blt+F7 l : oA
Iﬂl Eebiid Al Alt4+FD Figure 3-7b Insert Files into Project Dialog
Curnp ta ICE F3
Trace Log Fz2
Dump code over G4k to sram

Figure 3-7a Add Files to Project
Command of Project Menu

EM78 Series IDE User’s Guide 4BGetting Started o 67

Chapter 3 %

2. Browse and select the source file (or multiple files) you intend to insert into
the new project.

3. Click OK button to insert file into your new project after confirming your

selection.

3.5.3 Deleting Source Files from Project

From the Project window, select the file(s) you wish to delete. Then press the
Delete key from your keyboard or click Project = Delete Files from

Project....
J ﬂ Froject Wizard
o Mew, ..
= a]EH?BEEQ“_E“'&F] Open Project
= tﬂ E':'UI':E Files Save Project
;ﬂ test.dt Close Project
i @ HE&dE‘I Files Add Files to Project...
= List Files < Delete files from project... >
= e Ee -
I_1 tES:t-]St # pssemble A+F7
: 'ﬁ Map Files ¥ puid Shift+ Alt+F9
£ Library Files Rebuid Al Alt+F9
Dump to ICE F3
Trace Log F2
Figure 3-8a Deleting Source Files Directly

from Project Window Figure 3-8b Deleting Project Files

from Project Menu.

3.6 Editing Source Files from Folder/Project
3.6.1 Open Source File from Folder for Editing

You can also open an existing source file in the Editor window for a last minute
editing before adding it into the new project. To do this—

1. Click File = Open command.

2. From the resulting Insert Files into Project dialog (Figure 3.7b above),
select and click on the source file you want to edit. The file is automatically
opened in the Editor window.

To edit source files that are already added into the Project, see next Section.

68 e 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

3.6.2 Open Source File from Project for Editing

You can edit source files that are already inserted in the project. To do so,
double click the source file you wish to edit from the Project window and the

file will open in the Editor window.

== 1 org 0z0 j
s z Z start:
-3 EM78569--test.apj 3 0%02
i 21423 Soumce Files mov a,@0%
Double click to R o i 4 mov 02204
open & edit a file 3 Header Files 5 mov 0x21.a
Fee)] inc Oxz0
: gi’{‘ﬁ;l.j: 7 ine 0x21
apFies — jmp start

3 Libroy B]

Source file |
opened for editing

Figure 3-9 Editing Source File Directly from Project Window.

3.7 Compile the Project

With your source file(s) embedded into the
project, you are now ready to compile your
project using the following commands from
Project menu.

m Click Assemble (or Compile) command to
compile the active file only (generates *.Ist).

® Click Build command to compile the files
modified in the project they were modified.

®m Click Rebuild All command to compile all
files in the project regardless of whether they
were modified or not.

Note that in Asssembly mode, Build and

Rebuild All commands will generate objective

Project Wizard

[,

Open Project
Save Project
Close Project

&dd Files to Project...
Delete files from project...

Assernble Alt+

4 Buid Shift+alt+F3 >

Rebuild &l Alt+FI
Curnp to ICE F3
Trace Log F2

Figure 3-10a Compilation Commands
from Project Menu

(*.bbj) file, list (*.Ist) file, and binary (*.cds) file. In C mode, both commands
will generate objective (*.0) file, assembly (*.5) file, and binary (*.cds) file.

The compiled files are automatically saved in the same folder where your other
source files are located. Status of the assembly operation can be monitored

from the Output window as shown below.

B

Assembling
inking
-0 Erro . 0 Warning/

0 User

- \Bu.ilﬂ,{ Information }\ Find in Files }\ Messaze ,-"

Checking ROM, Processed 100%

Figure 3-10b Output Window Showing Successful Compilation

EM78 Series IDE User’s Guide

4BGetting Started o 69

Chapter 3

If error is detected during compilation, pertinent error message will also display
in the Output window with Build tag. Double click on the error message to
link to the source of error (text line) in the corresponding source file displayed
in the Editor window. If the corresponding source file is not currently opened,
it will be opened automatically.

x

Double click to link to || [#=senbling
the source of error

:The macro is not defined or inwvalid instruction.

| [[+ Build / Tnformation), Find in Files), Message IE
Figure 3-10c Output Window Showing Compilation Errors

Modify source files to correct the errors and repeat assembling and linking
operations.

In C mode, there are many useful messages reported in the Output window’s
Information tab if compiling succeeds. For example, it tells you the used ROM
size, available ROM size, used RAM data in figure, used data register in figure,
10 control data in figure, call depth, and max call depth. The most important
message is the characters “C” in register data location 0x10~0x1F. These “C”
characters tell programmer which and how many common registers to save and
restore in interrupt service routine. Refer to Section 6.1, Register Page (rpage)
for further details.

Figure below shows these messages which advice you to save common register
0x10 and 0x11 when MCU has just ran into interrupt service for C system and
restore these two common registers before leaving interrupt service.

Total Rom dSize :24576

Used Rom Size 00221 (0%)

Awvailable FRom Size :24355 (100%)

—————————————— Data Map —--—-—-—-—------

0x10 ~ OxlF are reserved for C Compiler

d -- Uninitialized data

D -- Initialized data

b -- Uninitialized hit data

B -- Initislized hit data

—————————————— RAM Data ------------- =-----—-—----- Register Data ----------- --—-------——--—— T0O Data ——--
012345678 9AECDETF 012345678 9AECDETF 01z345678

BO 2¥ dddd--------- - - - 0x00 dddbbbbbbbbhb--hbhb Ox0o0 - - - - - dddd

BO 23X - - - - - - - - - - - - - - - - Oxl0 ¢ C - - - - - - - - - - - - - = Oxi0 - - - - - - ddd

Bl ZX - - - - - - - - - - - - - - - - Ox20 - - - - - bbbhbbbbbbbbkh - IND Data o

Bl 3X - - - - - - - - - - - - - - - =

BEZ ZX - - - - - - - - - - - - - - - =

BZ 3% - - - - - - - - - - - - - - --

B3 EX - - - - - - - - - - - - - - - -

B2 3X - - - - - - - - - - - - - - ==

————————————— Call Depth ---—-——--—-----

Depth Interrupt Function

Figure 3-10d Output Window Messages after Compiling Successfully

70 e 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

3.8 Dumping the Compiled Program to ICE

With the source files deprived of'its errors and Broject Wizard
successfully compiled, download your Mew...
compiled program to ICE by clicking Project Open Praject
=> Dump to ICE or its corresponding e
shortcut key (F3). Gk e

Add Files to Project...
Delete files from project...

g pssemble BIt+F7
E¥ Build Shift-+Alt+F
Rebuid Al LIt+FD

Trace Log Fz

Figure 3-11 Dump to ICE Command
from Project Menu

3.9 Debugging a Project

With the compiled program successfully =l Go 2
downloaded to ICE dy to debug |/ E=™ 1o
ownloaded to , you are now ready to debug ¢, o o
the files. Be sure the ICE is properly connected | stepinto -
to your computer. TP Step Over Fa
. . {f# Step Out Ctrl+F7
Full debugging commands are available from the |+; a3 7o cursor £4
Debug Menu (shown with its corresponding Continuie step into Shift-+F7
shortcut keys in the drop-down menu at right). A |+ fun fom Sskcted Line
. . =) St
number of the frequently used debugging icons 2

Fig. 3-12a Debugging Commands

are also available from the eUIDE Program
Drop-Down Menu

Toolbar.
SRS PRUn M o E
Figure 3-12b Toolbar for Debugging Commands
Where
- Go - Auto dump and run program starting from the current program
=l counter until breakpoint is matched and breakpoint address is
F5 executed.

' Free Run — Auto dump and run program starting from the current
: program counter until the Stop button of the Stop Running

F10 dialog is clicked. All defined breakpoints are ignored while the
program is running.

r« | Reset — Perform hardware reset (register contents are displayed with

r initial values). ICE will return to its initial condition.

F6

EM78 Series IDE User’s Guide 4BGetting Started e 71

Chapter 3

£

™ Step Into — Auto dump and execute instructions step-by-step
including subroutines (with register contents updated at
F7 the same time).
If the RAM of your computer is full, do not click
command continuously.
- | Step Over — Same as Step Into command (see above), but excluding
{ subroutines and the CALL instruction is executed as Go
F8 command.
If the RAM of your computer is full, do not click
command continuously.
® Step Out — Auto dump and run program starting from the current
Ctrl+F7
1}
F4

program counter until the RET / RETI/ RETL
instruction address is executed.

breakpoints ignored.

Go to Cursor— Auto dump and execute from current program counter to
F9

the location where the cursor is positioned with

the cursor is positioned.

5

Run from Selected Line — Start running command from the line where

Toggle Breakpoint — Click command with cursor positioned on the line.

If line is set with breakpoint, it will be removed.
Otherwise, breakpoint is set.

Clear All Breakpoints — Remove all existing breakpoints.
=

top).
Trace Forth

Trace Back After trace log is executed; trace the log backward

step-by-step from the last executed address to the address
located before the current executed address (bottom to

After trace log is executed, retrace the log forward

step-by-step from the last executed address to the
address where Trace Back was started (top to bottom).

Stop: Stop Free Run or Go with breakpoint ignored.

During debugging, the contents of Program Counter, Registers, and RAMs are

read and displayed each time the program is stopped to provide important
interim information during program debugging.

72 ¢ 4BGetting Started

EM78 Series IDE User’s Guide

3.9.1 Breakpoints Setting

To assign a breakpoint,
position cursor on the line
where a breakpoint is going to
be set, then double click.
Observe the line highlighted in
green.

With cursor positioned on the

line, you can also click on the
‘-{TL'I Insert/ Remove Breakpoint

icon (hand shape) on the
toolbar to set a breakpoint, or
press FO.

Likewise, the defined break-
point is cleared if you double
click on it again, or the hand

Chapter 3

/ Breakpoint

Figure 3-13 Active Source File with a Defined
Breakpoint

icon is clicked the second time while the cursor is positioned on the defined
breakpoint. To clear all existing breakpoints, click Clear All Breakpoints

command from Debug menu.

EM78 Series IDE User’s Guide

4BGetting Started e 73

Chapter 3

74 e 4BGetting Started EM78 Series IDE User’s Guide

% Chapter 4

Chapter 4
Assembler and Linker

4.1 Assembler and Linker Process Flow

* dt or *.asm

j < S 8 Including files

v v v

S I R q List file (*.Ist)
Obiject file (*.obj)

v

EMC Linker

,j Map file(*.map)

Target file (*.cds)

Figure 4-1 Assembler and Linker Process Flow Chart

\4

EM78 Series IDE User’s Guide 6BAssembler and Linker e 75

Chapter 4 %

4.2 Statement Syntax

[label [:]] operation [operand] [,operand][; comment]
All fields are not case-sensitive, and separated by space or tab.

Label —The [:](colon) is optional and is followed by one or more spaces or
tabs.
A label consists of the following characters-
A~Z a~z 0~9
but with some restrictions:
* 0~9 must not be the first character of a name
* Only the first 31 characters are recognized

* To reserve colon (:) is recommend to programmers, because it could be
more readable.

4.2.1 How to Define Label

a) zeroflag equ RXX(.YY)
Ex1: zeroflag ==R3.2
Ex2: status ==R3

b) zeroflag 1 equ 0xXX(.YY)
Ex1: zeroflag 1 ==0x3.2
Ex2: status 1 ==0x3

¢) zeroflag 2 equ zeroflag(.ZZ) (zeroflag_1 equ RXX(.YY))
Ex: status 2 ==R3
zeroflag 2 == Status 2.2

d) zeroflag_3 equ zeroflagl(.ZZ) (zeroflag equ 0xXX(.YY))
Ex: status 3 ==0x3
zeroflag 3 == Status 3.2

¢) Add label with rpage / rbank / iopage

“range” and select “Special Register(R0..R1F)” from Watch dialog are the
same.

“rbank” and select “RAM(bank)” from Watch dialog are the same.
“iopage” and select “Control Register” from Watch dialog are the same.

76 e« 6BAssembler and Linker EM78 Series IDE User’s Guide

% Chapter 4

Ex: status 3 == 0x3:rpage 0

zeroflag 3 == status 3.2 (status_3 is already defined in rpage 0)
temp == 0x20:rbank 1

output == 0x6:iopage 1

outputbit 2 == 0x6.2 (output is already defined in iopagel)

IMPORTANT!
0x3:rpage 0 = Do not insert space before and after colon (:) character.

f) Derive Register or Bit information from label _ R(Duplicate) or
label B:

Ex: zeroflag == 0x3.2

mov a, zeroflag_ R ;equal mov a, 0x3
mov a, zeroflag B ;equal mov a, 0x2

IMPORTANT!!

This method is only displayed automatically in Watch window. When using this

variable, you must use register that is defined in the ICE specification for register or
bank page change.

Operation — An assembler instruction or directive
Directives give the direction to the assembler
Instruction examples:
Example 1: MOV A,@0X20
Example 2: ADD A,@0X20
Example 3: zeroflag == R3.2
status == R3
carryflag == status.0

org 0x0

jmp start
start:

BC zeroflag

BS status,2

BC carryflag
BS status,0

BC 0x3,2

BS R3,2

Examples of directives:
Examplel: ORG 0X20
Example2: END

EM78 Series IDE User’s Guide 6BAssembler and Linker e 77

Chapter 4 =

Operands — One or more operands separated by commas

Comment — Comments include line comment and block comment
Line comment syntax: preceded by a ““;” (semi-colon)

Example: MOV A,@0X20 ; move constant value 32 to
accumulator

Block comment: /* comment statements */

4.3 Number Type

Type Expression 1 Expression 2 Expression 3
Decimal 0D<digits> <digits>D <digits>
Hexadecimal 0X<digits> <digits>H
Octal 0Q<digits> <digits>Q
Binary 0B<digits> <digits>B

NOTE

If the first digit is “A~F” or “a~f” on hexadecimal expression 2, then you must add “0” to
precede the digits.

4.4 Assembler Arithmetic Operation

The arithmetic result must be calculated after assembler. If the arithmetic
expression cannot be calculated on assembler time, then error message will
display. At the same time, the arithmetic expression cannot support floating
point, so floating point number is self-transferred to integer.

TRUE and FALSE: TRUE is 0xFF, FALSE is 0x00.

The following operators give a summary of the operators, in order of priority.
a) Parentheses (and)
b) Unary operators

! Logical NOT

~ Complement

— Unary minus

78 ¢ 6BAssembler and Linker EM78 Series IDE User’s Guide

% Chapter 4

¢) Multiplication, division, modulo, shift
* Multiplication
/ Division
% Modulo
<< Logical shift left
>> Logical shift right

d) Addition arithmetic operators

+ Addition
— Subtraction
e) Bit AND operator
& Bit AND
f) Bit OR and XOR operators
| Bit OR
A Bit XOR

g) Logical AND
& & Logical AND

h) Logical OR
| Logical OR

i) Comparison
== equal
!= not equal
> greater than
< less than
>= greater than or equal to
<= less than or equal to

4.5 Program Directives

a) ORG: set value of program counter
Syntax: ORG <expression>
Example: org 0x200

b) EQU or == (Duplicate =): definition constant value
Syntax: <label> EQU<expression>
Example 1: R20 equ 0x20
Example 2: R20 == 0x20

EM78 Series IDE User’s Guide 6BAssembler and Linker e 79

Chapter 4

¢) Comment
Line comment

i

Syntax: ; <string >

Example: ; this is the comment string

Block comment

Syntax: /* <strings> */

Example: /* this is block comment example including multi lines */

d) EOP: end of the program ROM page with which the EOP instruction is

belong to

Syntax: EOP
Example: org
mov
inc
eop
inc

0x10
0x20,A
0x20

0x20

Result after assembling (the first column is address):

org
0010 mov
0011 inc

eop
0400 inc

0x10
0x20,A
0x20

0x20

e) END: the end of program. The rest of the program code after END
instruction will not be assembled.

END
org

Syntax:

Example:
mov
inc
end
mov

0x10
0x20,a
0x20

0x20,a

Result after assembling (the first column is address):

org
0010 mov
0011 inc

end

mov

0x10
0x20,a
0x20

0x20,a

80 ¢ 6BAssembler and Linker

EM78 Series IDE User’s Guide

Chapter 4

f) PROC, ENDP: definition of subroutine. The directives make the program

more comprehensible.
Syntax: <label> PROC

<statements>
ENDP
Example: BANKO: PROC
BC 0X04,6
BC 0X04,7
RET
ENDP

NOTE

PROC and ENDP directives only make the program more comprehensible. So RET
instruction must exist in the subroutine.

g) INCLUDE: include other source files. The instruction makes the program

more refined and clear.
INCLUDE function can include system default files and user defined files.
1) Include system default files; e.g., EMC456.INC, EMC32.INC:
Syntax: INCLUDE <filename>
Example: INCLUDE <EMC456.INC>

2) Include user defined files:
Syntax: INCLUDE “file path + file name”
Example: INCLUDE “C:\EMC\TEST\TEST456.INC”

The user defined file must include full folder path and filename.

NOTE

The source files usually include variable definition, macro definition, and subroutine
definition.

h) PUBLIC and EXTERN: The defined scope of the global label is public or

external. Although the eUIDE software is project oriented,
a project can contain two or more files. Ifthe global label is
referenced by another file, the global label must be defined
to PUBLIC in the defined file, and must be defined to
EXTERN in the referenced file.

PUBLIC:
Syntax: PUBLIC <label>[,<label>|

EXTERN:
Syntax: EXTERN <label>[,<label>|

EM78 Series IDE User’s Guide 6BAssembler and Linker e 81

Chapter 4 %

PUBLIC and EXTERN instructions can be defined at any location of a file
that contains one or more PUBLIC or EXTERN instructions.

Example: A project contains two files, one is TEST1.DT; the other is
TEST2.DT.

TESTI1.DT:
org 0x00
Public start
Extern loopl
Start:
mov a,@0x02
mov 0x20,a
jmp loopl
TEST2.DT:
org 0x100
Public loopl
Extern start
Loopl:
inc 0x20
jmp start
The label of “Start”, which is defined in the “TEST1.DT” file and is

referenced by the “TEST2.DT”file; must be announced as “PUBLIC” in the
“TESTI1.DT” file and “EXTERN” in the “TEST2.DT” file.

The label of “loop1”, which is defined in the “TEST2.DT” file and is
referenced by the “TEST1.DT” file; has to be addressed as “EXTERN” in
the ‘TEST1.DT” file and “PUBLIC” in the “TEST2.DT” file.

i) VAR: The instruction defines variable name during assembly time, so the
value of variable is only changed during the assembly time.

Syntax: Label VAR <expression>

Example: test wvar 1
mov a,(@test
test var test+l
mov a,@test

82 ¢ 6BAssembler and Linker EM78 Series IDE User’s Guide

% Chapter 4

i) MACRO, ENDM: The instruction defines macro
Syntax: <label> MACRO <parameters>

statements
ENDM

Example: bank0 macro
bc 0x04,6
bc 0x04,7

endm

IMPORTANT!
B The maximum number of macro is 32
B The parameters must be a definite address as shown in the examples below.

aa_label macro num Examplel:
1f num »>= 0x400 ' _ .
b 0x3,6 If “org 0x400” is omitted, the following
bs 0x3,5 conditions will result:
glse . . .,
he 0%3,6 a) The required “aa_label” macro
be 0x3,5 parameter (num) becomes unknown.
endif Hence, macro cannot expand.
d
IE He b) As macro fails, all its instructions
org Ozfff cannot be implemented.
é?p E;grt ¢) The error message “error A037: The
Stgrt : operand value cannot be calculated”
aa_label bh_label will then display
cal } Ehfl gh91 To prevent the above error, address
?;E g = “org 0x400” should be added before
“bb_label.”
org Ox400
bh_lahel:
inc OxZz0
ret

EM78 Series IDE User’s Guide 6BAssembler and Linker e 83

Chapter 4

FCALL MACED

addzr

Example2: (EM78P510N)

FCALL and FIJMP are reserved words.
These two words will determine whether
the program code exceeds page or not.

IF (addr-0z400) = [(S-0x400)
LCALL addr
EL3E
CALL addr
EHLDIF
ENDM
FIJMF MACRD addr
IF (addr-0z400) 1= [(S-0x400)
LIMP addr
EL3E
JHMEP addr
EHLDIF
ENDM
FPAGE MACRO MNLIME
IF HMNUME==
B 0Bx3:5
BE 0Bx3:6
ELZEIF HNLIME==
BS: 0x3:5
BE 0Bx3:6
ELZEIF HNLIME==
BE: 0#3:5
B 0Ox3.6
ELZEIF HNLIME==
BS: 0x#3:5
B 0Ox3.6
EL3E
ERROR
EMDIF
ENDM

FIJMP MACRO ADDEESS
IF ADDRESE-0X400! =35-0x400

FPAGE ADDRESS.-0X400
EWNDIF
JMEP ADDRESS

ENDM

FCALL MACRD ADDRESS
IF ADDRESE-0X400! =5-0x400

FPAGE ADDRESS.-0X400
CALL ADDEESS
FPAGE S5-0:400
ELZE
CaLL ADDEESS
EWNDIF

ENDM

Example3: (EM78P447S)

FPAGE, FCALL, and FJMP are
reserved words. These two words will
determine whether the program code is
over page or not.

84 ¢ 6BAssembler and Linker

EM78 Series IDE User’s Guide

Chapter 4

k) MACEXIT: this instruction is only used in the macro defined instructions.
If the MACEXIT instruction is assembled, then the remaining
macro instructions (if any) are not assembled.

Syntax: MACEXIT
Example: Source:
test var 5
bankOmacro
bc 0x04,6
if test>4
macexit
endif
bc 0x04,7
endm
bank0

After assembly...(the first column is address)
0000 bc 0x04,6

Because the “test” variable is equal to five, so the expression “test>4" is true,
and the “macexit” instruction is assembled. Accordingly, as “macexit”
instruction is assembled, the remaining macro instructions, “bc 0x04,7,”is not
assembled.

1) MESSAGE: display the user defined message in the Output window.
Syntax: MESSAGE “<characters>”
Example: org 0x00

message “set bank to 0 !!”
bc 0x04,6

bc 0x04,7

The user defined message (see below) is displayed in the Output window after
assembly.

USER MESSAGE: set bank to 0!!

IMPORTANT!!

The maximum number of messages is 500.

EM78 Series IDE User’s Guide 6BAssembler and Linker e 85

Chapter 4 %

m) $: current program counter value
“$” is used as an operand.
Examplel: jmp $
“jmp $” means to jump at same line as dead loop
Example2: bc 0x04,6
jmp $-1
“jmp $-1” means to jump back to “bc 0x04,6”

4.6 Conditional Assembly

a) IF If the statement after “IF” expression is true, then the following
instructions are assembled until “ELSEIF” or “ELSE” or “ENDIF”.

Syntax: IF <expression>

<statements1>
[ELSEIF <expression>

<statements2>|
[ELSE

<statements3>|
ENDIF

Example: org 0x00
bank macro num
if num==
bc 0x04,6
bc 0x04,7
elseif num==1
bs 0x04,6
bc 0x04,7
elseif num==
bc 0x04,6
bs 0x04,7
elseif num==3
bs 0x04,6
bs 0x04,7
else
message “error : bank num over max number!!!”
endif
endm

86 ¢ 6BAssembler and Linker EM78 Series IDE User’s Guide

Chapter 4

b) IFE: If the statement after “IFE” expression is false, then the following
instructions are assembled until “ELSEIFE” or “ELSE” or “ENDIF”.

Syntax: IFE <expression>

<statements1>
[ELSEIFE <expression>

<statements2> |
[ELSE

<statements3>|
ENDIF

¢) IFDEF: If the statement after “IFDEF” label is defined, then the following
instructions are assembled until “ELSEIFDEF” or “ELSE” or

“ENDIF”.
Syntax: IFDEF <label>
<statements1>
[ELSEIFDEF <label>
<statements2>]
[ELSE
<statements3>|
ENDIF

Example: org 0x00
ice456 equ 456

ifdef ice456
bc 0x04,6
bc 0x04,7
endif

d) IFNDEF: If the statement after “IFNDEF” label is not defined, then the
following instructions are assembled until “ELSEIFNDEF” or
“ELSE” or “ENDIF”.

Syntax: IFNDEF <label>

<statements1>
[ELSEIFNDEF <label>

<statements2>]
[ELSE

<statements3>]
ENDIF

EM78 Series IDE User’s Guide 6BAssembler and Linker e 87

Chapter 4

4.7 Reserved Word

4.7.1 Directives, Operators

+ - * / ==
1= $ @ # (
) ! ~ % <<
>> & | n &&
Il < <= > >=
DS ELSE ELSEIF ELSEIFDEF| ELSEIFE
ELSEIFNDEF END ENDIF ENDM ENDMOD
ENDP EQU EXTERN IF IFE
IFDEF IFNDEF INCLUDE MACRO MACEXIT
MODULE NOP PAGE ORG PROC
PUBLIC

4.7.2 Instructions Mnemonics

ADD AND BC BS CALL
CLR COM COMA CONTR CONTW
DAA DEC DECA DISI DJz
DJZA ENI INC INCA INT
IOR IOW JBC JBS JMP
Jz JZA LCALL LIMP MOV
NOP OR RET RETI RETL
RLC RLCA RRC RRCA SLEP
SUB SWAP TBL WDTC XOR
LCALL LPAGE PAGE BANK
NOTE
Some MCU do not have LCALL, LIMP, PAGE, and BANK instructions. You have to
study the specific MCU specification.

88 ¢ 6BAssembler and Linker EM78 Series IDE User’s Guide

w Chapter 4

4.8 Pseudo Instruction

The following pseudo instructions are supported for MCUs that have
LIMP/LCALL instructions.

Macro
Instruction

Syntax Equivalent Instruction

XCALL XCALL Label geulf‘é’z[f ci)r:hceur:/(/(iasné ﬁﬁﬁ’éﬁ'ﬁékmu CALL OR LCALL
awe [oup ape | [berielncument s MR | o or Low
JCF JCF Label | If carry flag =1, then JMP to label ;](lif/llg);zboel

JZF JZF Label | If zero flag =1, then JMP to label iﬁﬁgﬁbza
ADDCF ADDCF R R + Carry -> R I]I\?CC:: £X3'0
SUBCF SUBCF R R - Carry -> R ‘IJD?ECCORXS’O

EM78 Series IDE User’s Guide 6BAssembler and Linker e 89

Chapter 4

90 e 6BAssembler and Linker EM78 Series IDE User’s Guide

% Chapter 5

Chapter 5

C Fundamental
Elements

5.1 Comments

For a single line comment:

/l'| All data in the line after the comment symbol (twin-slash mark)
will be ignored.

For Multi line comments:

[* ... */ | All data in the line located within the comment symbols (slash
mark + asterisk) will be ignored.

Comments are used to help you understand the program code. It can be placed
anywhere in the source program. The compiler will ignore the comment
segment of the source code, thus no extra memory is required in the program
execution.

Example:

// This is a single line comment
/>

This is the comment line 1

This is the comment line 2 */

EM78 Series IDE User’s Guide 8BC Fundamental Elements ¢ 91

Chapter 5

@Eﬂ

5.2 Reserved Words

The reserved words for eUIDE C Compiler are made up of both the ANSI C
conformity reserved words and the EM78 Series unique reserved words. The
following table summarizes all the applicable reserved words for this compiler.

ANSI C Conformity Words

const default goto switch typedef sizeof
break do if short union extern
case else int signed unsigned
char enum long static void
continue for return struct while
indir ind page on off
io iopage _intcall rpage
low_int _asm bit bank
NOTE

W Double and float are NOT supported by the EM78 Series C Compiler.
B _asm is added for the EM78 Series C compiler. Do not use _ASM.
W indir, ind, io, iopage, rpage are used for MCU hardware definition and declaration.

5.3 Preprocessor Directives

Preprocessor directives always begin with a pound sign (#). The directives are
recognized and interpreted by the preprocessor in order to compile the source
code properly.

5.3.1 #include

#include “file_name”:

The preprocessor will search the working
directory to find the file.

#include <file_name>: | The preprocessor will search through the
working directory first to look for the file. If
the file cannot be found in the working
directory, it will search the file from the
directory specified by the environment

variable ELAN TCC INCLUDE.

“#include” tells the preprocessor to add the contents of a header file into the
source program.

92 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

Chapter 5

NOTE

B /t is not recommended to include C file. Errors may occur if C file is included.

B Suppose uaa is declared as global, unsigned int (unsigned int uaa) variable in
headfile.h. Then, uaa is used in testcode.c. If you want to use uaa in kkdr.c, first
you have to declare extern unsigned int uaa before you using it in kkdr.c file. The
same approach should be used in the third or more others c source files that are to
be included in the same project.

Example 1:

#include <EM78.h>
#include “project.h”

#include “ad.c” // 1t may meet errors.
Example 2:
unsigned int uaa; //in headfile.h
#include "headfile_h” //1in testcode.c file
#include “kkdr.h” //in testcode.c fTile
#include “pprr.h” //in testcode.c Tile
main O //in testcode.c fTile
{

uaa=0x21;

testl();

test2();
}
testl(); // in kkdr.h file
#include “pprr.h~ //in kkdr.c file
extern unsigned int uaa; //in kkdr.c file
void testl() //in kkdr.c file
{

uaa=0x38;

test2();

uaa=0x43;
}
test2() //in pprr._h Ffile

extern unsigned int uvaa; //in pprr.c file

void test2() //in pprr.c file
{

uaa=0x29;
}

EM78 Series IDE User’s Guide

8BC Fundamental Elements e 93

Chapter 5

5.3.2 #define

#define identifier

#define identifier token_list

#define identifier (parameter_list) token_list
#define identifier() token_list

The “#define” directive is used to define a string constant which will be
substituted into source code by the preprocessor. It makes the source program
more clear and logical.

NOTE

Muilti-line macro definition should be cascaded with a backslash (\) in between the
lines. When using assembly code in macro, use ONLY one instruction in a line.

Example:

#define MAXVAUE 10
#define sqr2(x, y) X * X +y * vy

5.3.3 #if, #else, #elif, #endif
#if constant_expression
#else
#elif constant_expression
#endif

The #if directive is used for conditional compilation. It should be terminated by
#endif. #else can be used to provide an alternative compilation. If necessary,
the program can use #elif for an alternative compilation which should only be
used for valid expressions.

Example:

#define RAM 30
#if (RAM < 10)

#define MAXVALUE O
#elif (RAM < 30)

#define MAXVALUE 10
#else

#define MAXVALUE 30
#endi

94 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

Chapter 5

5.3.4 #ifdef, #ifndef
#ifdef identifier
#ifndef identifier

The “#ifdef” directive is used for conditional compilation of definitions for the
identifier. The “#ifndef” directive is used when the conditional compiling
codes of the specified symbol is not defined. Both these two directives must be
terminated by “#endif” and can be optionally used with “#else.”

Example:

#define DEBUG 1
#ifdeft (DEBUG)

#define MAXVALUE 10
#else

#define MAXVALUE 1000
#endif

5.4 Literal Constants

5.4.1 Numeric Constant
Decimal: | Default
Hexadecimal constant: | Digit prefix with “0x”

Binary digit: | pjoit prefix with “0b”

“Numeric constants” can be presented in decimal and hexadecimal, depending
on the prefix modifier. Binary and octonary numerics are not supported.

Example:

12, 34 // Decimal
Ox5A, 0xB2 // Hexadecimal
0Ob10111001 // Binary digit

EM78 Series IDE User’s Guide 8BC Fundamental Elements e 95

Chapter 5

5.4.2 Character Constant

| ‘character’ ‘

Character constants are denoted by a single character enclosed by single quotes.
ANSI C Escape Sequences as shown below are treated as a single character.

ANSI C Escape Sequence

Escape Character Meaning Hexadecimal
\0 Null 00
\a Bell (Alert) 07
\b Backspace 08
\f Form Feed ocC
\n New Line 0A
\r Carriage Return 0D
\t Horizontal Tab 09
\v Vertical Tab 0B
\\ Backslash 5C
\? Question Mark 3F
\ Single Quote 27
\” Double Quote 22

5.4.3 String Constant

“character_list”

String constants are series of characters enclosed in double quotes, and which
have an implied null value (‘\0”) after the last character.

NOTE
It takes one more character space for constant string to store the null value.

Example:

“Hello World”
“Elan Micro”

96 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

Chapter 5

5.5 Data Type

The size and range (maximum and minimum values) of the basic data type are

as shown below.

Type Range ‘ Storage Size (Byte)
void N/A None
(unsigned) char 0~ 255 1
signed char -128 ~ 127 1
(signed) int -128 ~ 127 1
unsigned int 0 ~ 255 1
(signed) short —32768 ~ 32767 2
unsigned short 0 ~ 65535 2
(signed) long —2147483648 ~ 2147483647 4
unsigned long 0 ~ 4294967295 4
bit 0~1 1 (Bit)
float 1.175494351E-38F ~ 3

3.402823466E+38F
double 1.175494351E-38F ~ 3
3.402823466E+38F

1. See Section 6.4 of Chapter 5 for more details on “Bit Data Type”.

2. Ifyou use long, float, and double data type for multiplication, division, modulus, and
compare operations, the 0x20 ~ 0x24 (5 bytes) of Bank 0 are exclusively reserved for
compiler use. Therefore, do not assign these addresses to any variable when you
perform the above mentioned operations.

NOTE

When an arithmetic operator, such as, “*”, “/”, and “%” is used with different
data types, conversion of right-aligned variables to left-aligned data type is done
before the operator takes effect. We suggest you use the same data type to

develop program.

Example:

Int 11, 12;

Short S1, S2, S3;
Long L1, L2;

11 = Ox11;

12 = 0x22;

S1=11*12; =

change to S1 = (short) 11 * (short) 12;

// 1f forgot to add “(short)” before 11 and 12, the final
// result (in S1) will be 1 byte only

S1 = 0x1111;
S2 = 0x02;
L1 =S1/ S2; =

change to L1 = (long) S1 * (long) S2;

// 1T forgot to add “(long)” before S1 and S2, the final
// result (in L1) will be 2 bytes only.

EM78 Series IDE User’s Guide

8BC Fundamental Elements e 97

Chapter 5

Tiny C compiler uses two’s compliment to perform mathematical negative
signed declaration.

Example:
Assume abc is allocated at 0x20, Bank 1. Then from RAM Bank window you
will see E8 being displayed at that location.

int abc;
unsigned int uir;
abc=-0x18;

5.6 Enumeration

enum identifier
enum idenftifier {enumeration-list [=int_value]...}
enum {enumeration-list}

Enumeration defines a series of named integer constants. With the definition,
the integer constants are grouped together with a valid name. For each name
enumerated, you can specify a distinct value.

Example:
enum taglLedGroup {LedOff, LedOn} LEDStatus;

5.7 Structure and Union

struct (union)-type-name:

struct (union) identifier

struct (union) identifier {member-declaration-list}
struct (union) member-declaration-list

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
member-declaration-specifiers declaration-list

member-declaration-specifiers:
member-declaration-specifier
member-declaration-specifiers member-declaration-specifier

The structure group related data and each data in the structure can be accessed
through a common name. Unions are groups of variables that share the same
memory space.

NOTE
B Do not use bit data type in structure and union. use bit field instead.

B Siructure and union cannot be used in function parameter.

98 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

Example 1:
struct st

{
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

¥

struct st R5@0x05: rpage O

Example 2:

b0:1;
bl:1;
b2:1;
b3:1;
b4:1;
b5:1;
b6:1;
b7:1;

struct tagSpeechlinfo{

short rate;
long size;
} Speechinfo;

union tagTest{

char Test[2];

long RWport;
} Test;

Chapter 5

; //struct R5 is related to 0x05,

rpage 0O

5.8 Array

declarator:

array-declarator

array-declarator:

[constant-expression]
array-declarator [constant-expression]

An “Array” is a collection of same type data and can be accessed with the same

name.

NOTE

W /f “const” is used to declare an array, the data will be placed at the program ROM.
B The maximum size of a constant array variable is 255 bytes.
B The maximum size of an array is 32 bytes (RAM bank).

Example:

int arrayl [3] [10]

char port [4]

const int myarr [2] = {0x11, 0x22};
// 0x11, 0x22 will be put at program rom

EM78 Series IDE User’s Guide

8BC Fundamental Elements e 99

Chapter 5 m

5.9 Pointer

declarator
type-qualifier-list * declarator

A pointer is an index which holds the location of another data or a NULL
constant. All types of pointer occupy 1 byte.

NOTE

Function pointer is not supported.

Example:
int *pt;

5.10 Operators

5.10.1 Types of Supported Operators
The supported operators for the C expression are as follows:

Arithmetic operators

Increment and decrement operators
Assignment operators

Logical operators

Bitwise operators

Equality and relational operators
Compound assignment operators

The table below shows the detailed description of each of the operators:

Arithmetic Operators

Symbol Function Expression
+ addition exprl + expr2
- subtraction exprl — expr2
* multiplication exprl * expr2
/ division exprl / expr2
% modulo exprl % expr2

Arithmetic Operators

Symbol Function Expression
++ increase by 1 expr ++
- decrease by 1 expr --

100 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

Arithmetic Operators

Function

equal

Expression
exprl = expr2

Arithmetic Operators

Chapter 5

Symbol Function Expression
& bitwise AND exprl & epxr2
| bitwise OR exprl | expr2
~ bitwise NOT ~expr
>> right shift exprl >> expr2
<< left shift exprl << expr2
A bitwise XOR exprliexpr2
Equality, Relational, and Logical Operators
Symbol Function Expression Example
< Less than expr < expr X<y
<= Less than or equal expr <= expr X<=y
> Greater than expr > expr X >y
>= Greater than or equal expr >= expr X>=y
== Equality expr == expr X==y
1= Inequality expr |= expr xl=y
&& Logic AND expr && expr X &&y
Il Logic OR expr || expr x|y
! Logic NOT lexpr IX
Compound Assignment Operators
Symbol Function Example
= y=y +X X+=y
-= y=y-X X-=Yy
<<= y=y<<X y<<=X
>>= y=y >>X y>>=X
&= y=y & X y&=x
n= y=y "X y"=X
I= y=y|x yI=x

EM78 Series IDE User’s Guide

8BC Fundamental Elements e 101

Chapter 5

5.10.2 Prefix of Operators

Priority Same Level Operators, from Left To Right
Highest
4 I ~ ++ -- -(unary) +(unary) (type_cast) *(indirection) & (address) sizeof
*[%
+ -
<< >>
<<=>>=
===
&
N
|
&&
I
?:
v = 4= -= *= [= Op= >>= <<= &= |: N=
Lowest ,

5.11 If-else Statement

if (expression) statement
else statement

“If” statement executes the block of codes associated with it when the evaluated
condition is true. It is optional to have an “else” block is executed when the
evaluated condition is false.

Example:
if (flag == 1)
{
timeout=1;
flag=0;
3
else
timeout=0;

102 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

Chapter 5

5.12 Switch Statement

switch (expression)

{
case const-expr: statements
case const-expr: statements
default: statements

}

“Switch” statement is flexible to be set with multiple branches depending on a
single evaluated value.

NOTE
The expression will be checked as INT type, thus only 256 cases can be used in a
switch.
Example:
switch (1)
{
case 0: function0();
break;
case 1: functionl();
break;
case 2: function2();
break;
default: funerror();
}

5.13 While Statement

while (expression) statement

“While” statement will first check the expression. If the expression is true, it
will then execute the statement.

Example:

while (value != 0)

{

value--;
count++;

EM78 Series IDE User’s Guide 8BC Fundamental Elements e 103

Chapter 5

5.14 Do-while Statement

do
{

statement
} while (expression);

“Do-while” will first execute the statement and then check the expression. If
the expression remains true, then it proceeds to the next statement until the
expression becomes FALSE.

Example:

do {
value --;
count++;

} while (value != 0);

5.15 For Statement

for (exprl; expr2; expr3) statement;

“For” statement is equivalent to the following statement:

exprl;

while (expr2)

{
statement;
expr3;

}

“exprl” is executed first. Normally “expr1” will be the initial condition.
“While” statement is executed in the same manner.

Example:
for (i = 0; i < 10; i++)
{

value = value + 1;

}

104 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

% Chapter 5

5.16 Break and Continue Statements

break;
continue;

The “break” statement exits from the innermost loop or switch block. The
“continue” statement on the other hand will skip the remaining part of the loop
and jump to the next iteration of the loop. “Continue” is useful in loop
statements but it cannot be used in switch loops.

Example:

break exampl see switch.

for (i = 0; 1 < 10; i++)

{
flag = indata(port);
if (flag == 0) continue;
outdata(port);

3

5.17 Goto Statement

goto label;

Iabeﬁl.“

“goto” statement is used to jump to any place of a function. It is useful to skip
from a deep loop.

Example:
for (i = 0; 1 < 10; i++)
for (= 0; j < 100; j++)
for (k = 0; k < 100; k++)
{
flag = crccheck(buffer);
if (flag !'= 0) goto error;
outbuf(buffer);
}
error:
//clear up buffer;

EM78 Series IDE User’s Guide 8BC Fundamental Elements e 105

Chapter 5

5.18 Function

“Function” is the basic block of the C language. It includes function prototype
and function definition.

5.18.1 Function Prototype

<return_type> < function_name> (<parameter_list>);

A “function prototype” should be declared before the function can be called. It
contains the return value, function name, and parameter types.

NOTE

B The total parameters passed to a function should be a fixed number. The compiler
does not support uncertain parameter_list.

Recursive functions are not supported in the compiler.
Do not use “struct” or “union” as parameter for function.
Function pointer is not supported.

Bit data type cannot be used as a return value.

For reduced RAM bank wastage, it is suggest that you use global variable in
function, instead of using argument.

Example (Function Prototype):
unsigned char sum(unsigned char a,unsigned char b);

5.18.2 Function Definition

<return_type> < function_name> (<parameter_list>)
{

statements
}

Example (Function Content):
unsigned char sum(unsigned char a,unsigned char b)

{

return (atb);

}

106 ¢ 8BC Fundamental Elements EM78 Series IDE User's Guide

€%
oA
Chapter 6

C Control Hardware

Chapter 6

Related Programming

6.1 Register Page (rpage)

<variable name> @<address>[: rpage <register page number >];

The data type is used to declare a variable at a certain register page. Users have
to declare clearly which register page (including rpage 0) the variable is

declared with.

NOTE

B When a variable is declared as “rpage,” it cannot be declared as “bank,
or “indir” at the same time.

B Only global variable can be declared as “rpage” data type.

opage,”

B When an MCU has “rpage 0” only, <register page number> still needs to be assigned.

B Some MCUs use ‘register bank” instead of “register page” under special register.
When this condition occurs, keep on declaring in “rpage” just like in other cases.

B Usually common Registers 0x10~0x1F are reserve for C compiler. However, you may
use and declare a variable in 0x10~0x1F with “rpage 0” if C Compiler is not using the
registers. For example, you declare unsigned “int uiR16 @ 0x16: rpage 0”. It is okay
if C compiler is not using Register 0x16. But if C Compiler uses 0x16, it will report an
error and notifies you how many continuous common registers space are needed.

Example:
unsigned int myRegl @0x03: rpage O;

// myRegl is at address 0x03 of register page O

// Although the specific register only have one register
// page,the register page number cannot be ignored.

unsigned int myReg2 @0x05: rpage 1;

// myTest is at address 0x05 of register page 1

// 1T the specific register have more than one register
// page, user should point out in which register page

// the variable is located.

struct st

{

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 107

mailto:myReg1@0x03

Chapter 6

unsigned int b0:1;
unsigned int bl:1;
unsigned int b2:1;
unsigned int b3:1;
unsigned int b4:1;
unsigned int b5:1;
unsigned int b6:1;
unsigned int b7:1;
};
struct st myReg3@0x06: rpage O;
CONT
RO(A, V)
R1/TCC
R2/PC
R3 [myRegl
R4
rpage O rpagel... iopage 0 ioagel...
R5 myReg2 | I0C5
R6 | myReg3 I0C6
R7 I0C7
R8 I0C8
R9 10C9
RA IOCA
RB I0CB
RC I0CC
RD IOCD
RE IOCE
RF IOCF

Declare variables in common registers 0x10~0x1F

Example:

unsigned int uiR12 @ Ox12: rpage 0; //declare uiR12 at common
register 0x12

unsigned int uiRDD @ O0x16: rpage O;
unsigned int uiR17 @ Ox17: rpage O;
unsigned int uiR18 @ 0x18: rpage O;
unsigned int uiR19 @ 0x19: rpage O;
unsigned int uiR1A @ Ox1A: rpage O;
unsigned int uiR1B @ Ox1B: rpage O;
unsigned int uiR1C @ Ox1C: rpage O;
unsigned int uiR1D @ Ox1D: rpage O;

108 e 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

% Chapter 6

6.2 1/0 Control Page (iopage)

io <variable name> [@<address>[: iopage <io control page number>]];

Declare the variable at the register page position. You have to clearly declare at
which “iopage” the “i0” variable is located, in spite of the fact that there is only
one “i0” control page.

NOTE

W |f a variable is declared as “jopage,” it cannot be declared as “bank,” "rpage,” or "IND”
at the same time.

B Only global variable can be declared as “iopage” data type.

B When an MCU has “iopage 0” only, <io control page number> still needs to be
assigned.

Example:
io unsigned int mylOCl1 @0x05: iopage O;
// mylOCl is at address 0x05 of io control page O

io unsigned int mylOC2 @0x05: iopage 1;
// mylOC2 is at address 0x05 of io control page 1

CONT
RO(A, V)
R1/TCC
R2/PC
R3
R4
rpage 0 rpagel... iopage 0 ioagel...
R5 IOC5 | mylOC1 | mylOC2
R6 I0OC6
R7 IOC7
R8 I0C8
R9 I0OC9
RA IOCA
RB IOCB
RC IOCC
RD IOCD
RE IOCE
RF IOCF

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 109

Chapter 6

6.3 Ram Bank

<variable name> [@<address>[: bank <bank number>]];

Declare the variable at which RAM bank it is located. The <bank number > has
to be indicated, including the variable that is declared at Bank 0.

NOTE

B [f a variable is declared as “bank,” it cannot be declared as “rpage,” “iopage,” or “indir’
at the same time.

B Only global variable can be declared as “bank” data type.

Example:

unsigned int myDatal @0x22: bank O;
// myDatal is at address 0x22 of ram bank O
unsigned int myData2 @0x22: bank 1;
// myData? is at address 0x22 of ram bank 1
unsigned short myshort @0x20: bank 1;
// myshort is at address 0x20 and 0x21 of ram bank 1
unsigned long myLong @0x24: bank 1;
// myLong is at address 0x24~0x27 of ram bank 1

RAM Bank:
0 1 2 3 4 5 6 7 g8 9 A B C D E F
B0_2X . | |
BO_3X A myDatal
B1_2X] A
B1_3X — o myData2 —>J myLong

myshort

110 e 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 6

6.4 Bit Data Type

bit <variable name> [@<address> [@bitsequence] [: bank <bank number>/rpage

<page number>]];

Bit data type occupies only one bit.

NOTE
B Bit data type cannot be used in “struct” and “union.” It is recommended to use

“bitfield” instead, such as:
union mybit {

unsigned int b0:1
unsigned int b1:1
unsigned int b2:1
unsigned int b3:1
unsigned int b4:1
unsigned int b5:1
unsigned int b6:1
unsigned int b7:1

b
W Bit data type cannot be used in function parameter.
B Bit data type cannot be used as a return value.
B Bit data type cannot be operated by arithmetic operator with other data type.
B Bit data type is not supported in the 10O control register.
B Bitis a reserved word, so DO NOT use it as a name of “struct” or “union”.
B Only global variable can be declared as “bit” data type.
B You cannot assign location for Bit data in local field. Otherwise compilation error will
oceur.
Example:
bit myBitl; // location of myBitl is assigned
// by linker
bit myBit2 @0x03 :rpage O;
// if doesn’t declare bit
// sequence,the default location
// is at bit 0. Therefore myBit2
// is at bit 0 of 0x03 of rpage O
bit myBit3 @0x04 @5: rpage 1; // myBit3 is at bit 5 of 0x04,
// rpage 1
bit myBit4 @0x05 @6: rpage 1; // myBit4 is at Ox05 bit 6 of
// rpage 1
bit myBits @0x22 @3: bank 1; // myBit5 is at 0x22 bit 3 of ram
// bank 1

EM78 Series IDE User’s Guide

10BC Control Hardware Related Programming e 111

Chapter 6 %

rpage 0 0 rpage 1
ox03 [T T [[[[[] myBit2is at 0x03 bit 0
ox04 | | | | [[| |] myBit3is at 0x04 bit 5

oxos [| [[[[T LCLITTTT1]]

A
oos [[[[TTTT] ALLITTTT]

myBit4 is at 0x05 bit 6 of rpage 1

RAM Bank:
0 1 2 3 4 5
Bl 2X 7
Bl 3X

myBit5 is at 0x22
bit 3 of RAM bank 1

6.5 Data/LCD RAM Indirect Addressing

indir <variable name> [@<address>[: ind <ind number>]];

Declare the variable at which indirect data RAM or LCD ram is located. The
<ind number > has to be indicated if address is assigned.

If the MCU has Data RAM, use “ind 0” (indirect RAM 0)
If the MCU has an LCD RAM, use “ind 1” (indirect RAM 1)

NOTE

W [f the specified MCU does not support IND bank, the compiler will generate an
error message, e.g., “Symbol ‘WriteIND’ undefined”.

B Only global variable can be declared as “indir” data type.

W “Indir” data type does not support array or point variable.

Example:
indir int nDatal; //default is “ind 0”, so nDatal is at Data Ram
indir int nData2 @0x30: ind O;

//nData2 is at Data Ram because “ind 0 is used
indir int nData3 @0x01: ind 1;

//nData3 is at LCD Ram because “ind 1” is used

112 ¢ 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 6

Data RAM: LCD RAM:

S0 S1S2S3S4S5..

0x00 | myDatal co

Ci1
C2
C3
0x30 | myData2 c4

: C5
Cé6
Cc7

A\ myData3

6.6 Allocating C Function to Program ROM

<return value> <function name>(<parameter list>) @<address> [: page <page
number>]

You can place C function at the dedicated address of the program ROM, and use
“page” instruction to allocate which page in the program ROM you wish to
assign.

NOTE
B Only C functions can be declared as ‘page.”

B Do not allocate the interrupt save procedure, nor the interrupt service routine at the
dedicated address of the program ROM.

Example:

void myFunl(int x, int y) @0x33
// myFunl() is placed at 0x33 of ROM page 0 (default
// page)

{

}
void myFun2(int x, int y) @0x33: page 1
//myFun2() is placed at 0x33 of ROM page 1

{

}

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 113

Chapter 6 %

Progrom ROM Progrom ROM
0x033 0x???7? Function befor,
(0x33 of page0)| myFunl() myFun2() allocation
0x433 0x0433
(0x33 of pagel)| myFun2() [(0x33 atpagel)] myFun2() Function after
allocation

6.7 Putting Datain ROM

const <variable name>;

Some data cannot be altered during program execution. Hence, you need to
store such data into the program ROM to save limited RAM space. The
Compiler uses the “TBL” instruction to incorporate such data into the program
ROM.

NOTE
W Use constant data type to store data into the ROM.
B Only global variable can be declared as “const” data type.
B The maximum size of a constant array variable is 255 bytes.

Example:
const int myData[] = {1, 2, 3, 4, 5};

const char myString[2][3] = {
“Hil”,
“ABC™

}:

114 ¢ 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

% Chapter 6

Program ROM:

TBL
RETL @0x01 |)
RETL @O0x02
RETL @0x03 > myData
RETL @0x04
RETL @0x05 2
RETL @O0x48
RETL @0x69
RETL @0x21
RETL @O0x41
RETL @O0x42
RETL @0x43 |)

> myString

NOTE

If the specified MCU does not support TBL instruction, a page has only one ROM data
area (below 0x100). Otherwise a page has a maximum of two ROM data areas.

6.8 Inline Assembler

The compiler has an in line assembler which allows you to enhance the
functionality of your program.

6.8.1 Reserved Word

The reserved words for the inline assembler are:
asm

...... //write assembly code here

All the assembly instructions (in upper or lower case) of the EM78 series are
supported.

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 115

Chapter 6

NOTE

B You can declare variable in 0x10~0x1F when C Compiler is not using it. See Section
6.1, “Register Page (rpage)” for the details.

”

W /f you have to switch “rpage,” “iopage,” or “bank” in the inline assembly, the original
‘rpage,” “iopage,” or “bank” must be saved at the beginning and restored at the end of
the inline assembly program section. Refer to Example 1 in the next section (Section
6.8.2).

W /f you use 0x10~0x1F in inline assembler, compiler will not report a warning or error
message, but it may encounter some other unexpected errors.

B You cannot use “_ ASM” (upper case) to replace “_asm” (lower case).

B [f you use register address, io control address, or RAM bank address directly,
compiler will not be able to recognize and differentiate between registers, io control,
or RAM during assembly. You have to change the page & bank registers (“bs 0x03, 7
bs 0x3, 6” in the Example 1 below).
Before changing the page & bank registers, you need to save the procedure (see top
section of the Example 1) and restore it at the end of the program (see bottom section
of the Example 1).

6.8.2 Use of C Variable in the Inline Assembly

The Compiler allows you to access the C variable in the inline assembly as
follows:

mov a, %<variable name> //move variable value to ACC

mov a, @%<variable name> //move address of variable to ACC

Example 1:
_asm
{
// Save procedure of rpage, iopage and bank register
mov a,0x3
mov %nbuf, a
mov a, 0x04
mov %nbuf+l, a
bs 0x03, 7
bs 0x03, 6 //Switch to other rpages
//Restore procedure of rpage, iopage and bank
mov a, % //register
mov Ox03, a
mov a, %nbuf + 1
mov Ox04, a

NOTE

If R3 Bit 6, Bit 7 are not page selection bits, or R4 is not a RAM selection register, refer
and follow the procedure specified by the pertinent MCU Product Specification.

116 e 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

s Chapter 6

Example 2:

int temp;
temp=0x03; //assume temp is at 0x21 of bank O
_asm {mov a, %temp} //move value 0x03 to ACC

_asm {mov a, @%temp} //move address 0x21 to ACC

Example 3:

unsigned int temp_a @0x20: bank O;
unsigned int temp_s @0x21: bank O;
#define status 0x03;

void main()

{

_ asm
{
mov %temp_a, a // = mov 0x20, a
mov a, status // = mov a, Ox03
mov %temp_s, a // = mov 0Ox21, a
}

}

6.9 Using Macro

You can use macro to control the MCU and shorten the program length.

NOTE
B Use “#define” to declare a macro.
Use “” to join more than one line assembly codes.

B Do not add any character after “\” (even a block character is not allowed). Otherwise,
an error will occur.

B Do not use constant as variable in macro. It will result to an error.

Example:

#define SetlO(portnum, var) asm {mov a, @var} \
_asm {iow portnum}

#define SetReg(reg, 3) asm {mov a, @3} \
_asm {iow portnum}

Macro “SetReg” will encounter error if constant is used as argument.

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 117

Chapter 6 %

6.10 Interrupt Routine

In TCC2, the following three factors have to be taken into account in handling
interrupts:

1) Interrupt Save Procedure: the procedure to save some registers before
executing a service routine. Many new MCUs are now designed to save the
important registers, like ACC, R3, R4, or RS as interrupt occurs and restore
them before it quits interrupt service. Moreover, TCC2 C-Compiler under
eUIDE, can also saves and restore these registers. In case both MCU and
TCC2 do not provide the said registers, eUIDE will automatically supply
them when a new template file is added into the new project.

An MCU provides more than one interrupt vectors. To determine which
interrupt is in use, you have to save the Register 0x2 (PC) to ACC. The
TCC2 will then use the PC value to determine which interrupt vector source
is being utilized.

2) Interrupt Service Routine: is the act taken to perform an interrupt. You
need not care how many interrupt vectors there are, You only need to write
the interrupts service code in the routine and switch “case” or “if else if” to
determine which interrupt vector source is needed.

3) Global Interrupt Vector Index variable (IntVecldx): declare
“IntVecldx” as global integer, e.g., “extern int IntVecldx” and “IntVecldx”
will occupy 0x10. Therefore, you cannot declare or use 0x10 anywhere in
project. Ifyou try to use 0x10, the Compiler will not be able to warn you but
the program will run into wrong result.

6.10.1 Interrupt Save Procedure

void _intcall <function name>_l(void) @<interrupt vector address>: low_int <interrupt
vector number>

You have to write “MOV A,0x2” first in the inline assembly code (see Example
1 below).

6.10.2 Interrupt Service Routine

| void _intcall <function name>(void) @int

The <interrupt vector number> is skipped in TCC2 interrupt service routine as
there is only one interrupt service routine function available.

The Example 1 below shows EM78P510N has more than one interrupt vectors.
With this MCU, you can write interrupt service routine code in each “case”
relative to interrupt vector. The “case” and interrupt save procedure that are not
going to be used, can be marked accordingly.

118 e 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 6

In Example 2, EM78569 is shown without employing 0x10 and declaring
“IntVecldx” as the MCU has only a single interrupt vector. However, the
hardware is able to auto-save and restores registers (ACC, R3, & R5). The
TCC2 C-Compiler auto-saves R4.

In Example 3, with EM78567; you also cannot use 0x10 nor declare “IntVecldx”
as the hardware has only a single interrupt vector. Moreover, the MCU cannot
auto-save nor restore register too.

You have to note that some MCUs require “reti” instruction in the first line to
tell compiler to restore inline assembly right after the “reti” line. Without “reti”,
the compiler will automatically restore inline assembly at the end of the
Interrupt Service Routine function. “reti” must be placed as the first order in
restoring inline assembly.

6.10.3 Reserved Common Registers Operation

Compiler saves the common registers (0x11~0x1F) which the Compiler uses.
Note the usage of “reti” instruction in restoring inline assembly in some MCUs
(see Example 3 below).

Example 1:

EM78P510N: This MCU saves and restores ACC, R3, and RS during interrupt
execution. Note that this particular MCU has more than one interrupt vectors.

extern int IntVecldx; //occupied 0x10:rpage O

'\'/'oid _intcall AllInt(void) @ int

{

switch(IntVecldx)

{
case 0x4: //write interrupt vector 0x3 in this case
break;
case 0Ox7: //write interrupt vector 0x6 in this case
break;
case OxA: //write interrupt vector 0x9 in this case
break;
case 0OxD: //write interrupt vector OxC in this case
break;

case 0x10: //write interrupt vector OxF in this case
break;

case 0x13: //write interrupt vector 0x12 in this case
break;

case 0x16: //write interrupt vector 0x15 in this case
break;

case 0x19: //write interrupt vector 0x18 in this case
break;

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 119

Chapter 6

case 0x1C: //write interrupt vector Ox1B in this case
break;

/* User also can use if-else if
if(IntVecldx==0x4)
%else if(IntVecldx==0x7)
else if(IntVecldx==0xA)
else if(IntVecldx==0xD)
else if(IntVecldx==0x10)

else if(IntVecldx==0x13)

§ o P o A o A o e o ey

else if(IntVecldx==0x16)

*/
}

void _intcall TCC_I(void) @ Ox03:low_int O
_asm{MOV A,0x2}; //using LIJMP to interrupt service procedure
void _intcall ExtInt _I(void) @ Ox06:low_int 1
_asm{MOV A,0x2}%};

void _intcall WatchTime_I(void) @ Ox09:low_int 2
_asm{MOV A,O0x2};

3oid _intcall Timel_I(void) @ OxOC:low_int 3
{_asm{MOV A,0x2%};

3oid _intcall Time2_I(void) @ OxOF:low_int 4
{_asm{MOV A,0x2}%;

3oid _intcall ADC_I(void) @ Ox12:low_int 5
_asm{MOV A,0x2}%};

3oid _intcall UART_I(void) @ Ox15:low_int 6
_asm{MOV A,0x2}%};

3oid _intcall SPI_I1(void) @ Ox18:low_int 7
_asm{MOV A,0x2}%};

3oid _intcall LVD_I(void) @ Ox1B:low_int 8

_asm{MOV A,O0x2};
}

120 ¢ 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

s Chapter 6

Example 2:

EM78569: Note that this particular MCU has only one interrupt vector. This
MCU saves and restores ACC, R3, and R5 during interrupt execution. eUIDE
will tell Compiler to save and restore R4.

void main()

{

_asm{MOV A,@0x10 //enable bit 4 ,CONT

CONTW

}
}
void _intcall interrupt(void) @ int
{

// Write your code (inline assembly or C) here
}
void _intcall interrupt_I(void) @ 0x08:low_int O
{

_asm{PAGE @0x0} //it’s dangerous to skip this line.
}
Example 3:

EM78567: This particular MCU has only one interrupt vector. The hardware
does not save nor restore any register and Compiler just can save and restore R3
and R4.

void _intcall interrupt(void) @ int

{

// Write your code (inline assembly or C) here

//restore ACC and R5
_asm {
reti //tell compiler to recover common registers here
SWAPA OX1E
MOV 0OX5,A
SWAP OX1F

SWAPA OX1F
}

3
void _intcall interrupt I(void) @ Ox08:low_int O
{
//save ACC and R5
_asm {
MOV OX1F,A
SWAPA 0X5
MOV OX1E,A

PAGE @OXO
}

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming e 121

Chapter 6

122 ¢ 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 7

Chapter 7

Quick Workout on Tiny

C Compiler

7.1 Introduction

This chapter introduces you to a quick way of understanding and controlling C

Compiler. Execute eUIDE by

double clicking the eUIDE icon.

7.2 Create a New Project

41| Fie_Edit)view(BrojecDDebug Tool Option IDE Window Help

Figu

From Menu Bar, click File 2>
New or Project > New to call

New dialog (Figure 7-1c). Then |65 open. cu0

: H Cl Open Project
from the New dialog (Figure 7-1c i e Prorent
: : & save CHrl+5 e e
below), click on the Project tab to . Close Project
. . e As..,
select target MCU, assign project | g sae al Add Files to Project...
: Delete fies fr ject...

filename and folder. Then click P—— =T e e priee

el :] &2 Assemble Blt+F7
the “C Optlon Button for C Save Project Sl

Compiler Project Type. Click OK 7=

button to create the project.

re 7-1a eUIDE Menu Bar

File Project

the

Project Wizard

Figure 7-1b File & Project Drop Down Menus

| Create a New File | Projects |

Micro Contraller Project Hame

1

EM78P311NICESOIN | | test
EM7EPZ12N(ICES0ON)

[

EM7TAP330N (ICE2301) Location
EMTAP331N(ICEZ30N)

EM7SP2A2H(ICELI) [CiDo

Assign a project
- filename (no suffix

/ required)

b 5ot 0] [Jmage Locate the folder to

EMTAF346H (ICE3451)
EM7TAF418N (ICE4151)

EMTAP44TR(ICES4T) C
EM7EP4515(ICE451)
EM7TAP458(ICEA5E)

EM74P 3400 (ICE2400) Fuoject Type - Library Cutput
EM7BPA4TH{CEST) O Assembler | @ Nomal (*ear)

(O Libeary { *Jb)

[11l

In this particular case, EM7BPSSUCELSE)
EM78P468N is 3
selected as target MCU

NIEEIGE]
EM7EP460(ICE460;
EM78PS07H ICESOTI) |

L

Figure 7-1c New Dialog

store the new project

Click the “C” Option for
C Compiler Project

EM78 Series IDE User’s Guide

Quick Workout on Tiny C Compiler e 123

Chapter 7

NOTE

W Do not type any filename suffix. eUIDE will auto-add append “cpj” as suffix for the C
Compiler project filename.

B See Section 3.4.2 for more details).

Observe the new project is then created with the defined project name and
micro- controller you have selected, displayed at the top of the Project window.

\L Project Filename
(“cpj” auto-appended
for C mode)
Target _~
Microcontroller

Figure 7-1d Project Window Showing Target MCU & Project Filename

7.3 Add a New “C” File to the Project

To add a new “C” file to the project, open New dialog (New or Project > New)
This time, the New dialog will appear with Create a New File tab automatically
selected (Figure 7-2 below). eUIDE will auto-provide a template with the basic
Tiny C Compiler main() file, interrupt save procedure, and interrupt service
routine functions (see Section 7.5 below for details) when the Source File (*.¢)
is selected in the left list box and the Empty File checkbox is disabled.

The Add new file to project checkbox is enabled by default. Now enter a
filename for the first new file to be added into the File Name text box (no suffix
required as eUIDE will append proper suffix automatically). Press OK button
to add the first “C” file into the project.

| New @1

Create a New File | Projects]

ile (*.c) -EENEEoE Ml ¥ Addnew fis to projsct
Select Source File (*.c) T . i

Do not enable Empty | — File Name:

File checkbox kbbi
File Location:
New “C” file filename |F:"-.TEMP"-BUIDE\-"‘I.D'\ICdEE"-. _J

1
(Suffix “c” will auto-append)

oK | Cancel |

Figure 7-2 Adding the First New “C” File with Main(), Interrupt Save Procedure,
and Service Routine Frame Functions

124 e Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

Chapter 7

7.4 Add a Second File or a New Header File to the

Project

To add a new second “C” file to the project, call New dialog again. This time
you have to enable the Empty File checkbox in the Create a New file tab.

New

ELAN Source File(".c

Enable Empty File
checkbox if Source File |

(*.c) is selected,

otherwise, don't care.

Create a New File | Projects]

ELAN Header File(*h)

=

¥ Add new file to project
Empty File

File Mame:

|thesec:0nd

File Location:
|F:"-.TEM PreUIDEVT.ONC468N

o]

Cancel ‘

Figure 7-3a Adding a New Second File or Head File to the Project

Enter a filename (without suffix) and click OK button. The eUIDE will create a
new and empty “C” file (or Header file if Header File (*.h) is selected in the left
list box as show in the figure above).

or not.

if Header File (*.h) is selected in the left list box, an empty Header file will be created
and added into the project regardless of whether the Empty File checkbox is selected

NOTE

The following shows an
files and one header file.

example of a project template with a number of “C”

J B hbbic |W lhesecond.cl e

headfe.h |

oject = |
=21 EM70P468H—tost cp
Ea Bouree Filex

i kkbbic
)| thesecond.c
=123 Header Files

- L[# headfileh
List Files

Ei— b

| FileViewI

0071 void main()

o2 {

003

o004 3

005

006 void _inteall tee_ 1 (void)
o7 {

nogE _asm

115 B
010 PAGE @0X0

011}

0z}

013 void _inteall tec(void) @ int O
014 {
015
016
0z
018
013
020

021
022 S<backup C system
ASm

L | .

@ 0x03:1low_int 0O

Shackup R4
_asm

SWAPA 0z04
MOV 0x1F, A
¥

Figure 7-3b An Example of a

Created Project Template with Two “C” Files and One Header File

EM78 Series IDE User’s Guide

Quick Workout on Tiny C Compiler e 125

Chapter 7 %

7.5 The Main(), Interrupt Save, and Service Routine
Functions

The following Figure 7-4 shows part of the service routine. Only one main()
function can exist in a “C” mode project.

Usually, you do not need to modify the saved and restored R4, R3, ACC, or RS
registers in the file that eUIDE supplies. However, for precautionary reason, it
is recommended that you check whether the saved or restored locations are at
the same ram bank. In this particular example case, MCU EM78P468N
hardware saves the ACC and R3 registers before executing the interrupt service
routine and restores them when the interrupt service routine is completed.
(Refer to EM78P468 8-Bit Microcontroller Product Specification). So, R4
need to be saved and restored by eUIDE C compiler. Inline assembly is used to
perform save and restore processes (refer to Section 6.8, Inline Assembler).
Saving and restoring of ACC, R3, R4, or R5 means saving and restoring the
MCU hardware.

In addition to saving and restoring MCU hardware, in some cases you also need
to save and restore “C” system. Some calculations outside interrupt service
routine in C Compiler do not only use ACC, the declared register, or ram. They
also use some of the common registers 0x10~0x1F as well. The interrupt
service routine also uses these common registers. You need to confirm that
these common registers’ value are the same before running them into interrupt
save procedure and leaving interrupt service routine. That is to say, you have to
be sure to save and restore these common registers correctly. The C Compiler
will display its compiling result in the Qutput window.

Suppose the 0x10~0x14 common registers in the following example have to be
saved and restored, apply remarks into these two backup “C” systems. You can
restore the “C” system inline assembler code (by removing the remarks) if
needed. If the C Compiler needs more common registers to save and restore
over and above 0x10~0x14, you only need to add codes, e.g., MOV A, 0x15 and
MOV 0x37+1, A; after saving 0x14 in the backed-up “C” system inline
assembler. Likewise, add MOV A, 0x37+1 and MOV 0x15, A after restoring
0x14 in restore “C” system inline assembler.

You can write interrupt service code between backup “C” systems and restore
“C” system, e.g., //Write your code (inline assembly or C) here as shown in the
following example.

126 e Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

Chapter 7

extern int IntWecIdx; //occupied OxiO:rpage O
vold maini)
L

woid _intcall ALLInt (void) @ int
{
switch(IntVecId:x)
i
case Oxd:
filrite wour code {(inline assenbly or C) here
hreak;

case Ox7:
filrite wour code {(inline assenbly or C) here
hreak;

case Oxli:
filrite wour code {(inline assenbly or C) here
hreak;

case OxD:
filrite wour code {(inline assenbly or C) here
hreak;
H
i
vold inteall tee 1{wvoid) [0x03:low int O
{
_asm{ MOV L, 0xz
PAGE [0x0
i
i

woid _intcall int0_1(void) @ Ox06: low_int 1

{

_asm{ MOV A, 0x2
PAGE ROx0
}

+

Figure 7-4 eUIDE Provides C Main & Interrupt Frame (template)

7.6 Project Development with Interrupt

The following example shows how to write “C” code in your product
development. In the example, the MCU in awaken by Port 6 with Counter 1
underflow interrupt with interrupt vector 0xC. So, you need to write some
initial codes and your interrupt service code as shown Figures 7-5a & 7-5b.
Then activate one of “C” files and use Alt+F7 to compile the file to see if errors
exist in the file. The Alt+F7 will merely compile the active file. During
development, use Alt+F7 to compile the “C” files one by one to save
compilation time. After no-error status is verified in all “C” files in the project,
use Rebuild All (Alt+F9) command to compile and link the object code, then
create execution file (cds). If Rebuild All is successfully executed, C Compiler
will report many important and useful messages in the Information tab of the
Output window (Figure 7-5¢ below).

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler e 127

Chapter 7

005 #define ENI() _asm{eni} ZI woid _inteall ALLInt{woid) B int
D06 #define SLEP() _asm{slep} i -
D07 #define MOP() _asm{nop} J switeh | IntVeeIdx)

008 #define uchar unsigned char

009 vold main() N .) .
010 { sase ud: Write interrupt service
011 ctest1();] ISR &= OxF7

012 while(1) R57=!RS57 T code here

013 {}: hreak;

014 }

015 Caot Onrt

016 void ctestl() #éWrite your code (inline assewnbly or C) here

017 { break;

018 uchar temp:
019 abc=0z23;
020 def=0x39;
021

case Oxi:
A4Write your code (inline assewbly or C) here

022 PECR=0x80: 1 hreak:
023 PEPH=0xA0: S
024 WDTCR=0x00; Zswdt disal case Lxb:
025 temp=PORTE; srread pors //Write your code (inline assenbly or C) here
026 EMI(): break:
027 WUCR=0x0d: ks }
028 IMR=0=80; S 3
D29 -~ SLEP(): wvoid inteall tec livoid) @ O0x03:low int O
030 P - -
051 ctest2(): _asm{MOV A, 0x2
Ll .l PAGE BOxD
}
Figure 7-5a Writing Initial Code }
woid _intcall incd_1(void) c] Ox06: low_inc 1
{
_asm{ MOV A, 0xi
Figure 7-5b Writing Interrupt Service Code in
Counter 1 Interrupt
Register usage status
“0x10” need to be saved & restored /\ 10 Control usage status —
ﬂ Total Rom Size :4096
Program ROM Used Rom Size ;0155 (3%)
MP=ilable Rom Size :3%41 (97%
usage status [T tebte Rem Sime (3L (570
Data Map
) 0x10 ~ OxlF are reserved for ¢ Compiler
Register or RAM d -- Uninitialized data
data t =- Initialized data
Usage aia ype b -- Uninitialized hit data
E -- Initialized bit data
—————————————— RAM Data —----—------- Regikter Data ----------- =---—---------}- IO Data
012345478 %ABCDETF 3 5678 %ABCDETF 01§z 3 4 5 &
B0 2X ddddddDDDDDDDDDD bdbbEbbhkddbbbk 0x00 - - - - - dd
B0 3% DD - -----= === 0xl0 C- - - - - = 0x10 - - - - - - d
RAM data Bl 2 - - - - - - - - - - - - - - - - —--———-----—-—- IND Data —--------—-----
logmEy - - - - - - - - - - - - - - - -
usage status B2z -
BZ 3% - - - - - == == === ===
B3 2% = = = = = = = = = = = = = = - -
T B
————————————— Call Depth —------—----
Depth Interrupt Function
[u] N Program3tart
1 k4 _too 1
1 b4 _tee
1 v Tintd 1
1 ks _int0
1 ks _intl_1
1 ks _intl
1 k4 _counterl 1
. - 1 k4 counterl
Function List vs. | o1 < Teounterz 1
Call relation 1 ¥ _counterZ
1 ke _highpulse 1
1 b4 _highpulse
1 4 _lowpulse 1
1 4 _lowpulse
1 k4 _PortePorts_1
1 k4 _PortePortd
[u} N _main
C 1 M _etestl
C Z M _otest?
Ca” Depth dgmes Function Call Depth: Z
 []5 Build_»Information (_Find in Files_», Message », Pogram Fom KD | |
|A]lFilesSaved = 023, Coll5 | Dos /]

Figure 7-5¢ Output Window Information Messages after Successful Rebuild All Execution

128 e Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

% Chapter 7

7.7 Tips on C Compiler Debugging

7.7.1 Speed up Debugging

In C mode environment, you can
increase the speed of step by step
debugging (with Step Into (F7) and
Step Over (F8) commands) by selecting ¢ ICE riermory,
the Speed Up Debug checkbox from Get checksurn from project
the Tool menu (figure at right). iqay ' '

II:u:ui
Connect Ctel4+-Shift+C

Piggy back Hi Lo forrat
Clear all output mapping line

Note that this function is disabled when
debugging in Assembly mode.

Compute execution time ¥

v Speed Up Debug

Figure 7-6 Speed Up Debug Command

7.7.2 View Corresponding Assembly Code in C
Environment

With the Assembly Code checkbox of View
View menu (figure at right) enabled, the —_—
C source code and its corresponding E SR
assembly codes can be fully displayed v Bpecial Register
to_gether in the Edit window (see next v Ceneral Be gisters (Bank)
Figure 7-7b). ——
Data B
Debugging can be carried out by L e e
focusing on either C or assembly code. v LCD Data

Toolbars r
| v Statos Bar

T Diocurment Bar

Figure 7-7a Press Assembly Code Button in
View

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler e 129

Chapter 7

2853
2854
2855
2856

2857
2858
2859
2860
2861
2862
2863

e

cl=ci~3;

cl=cl.Caa;

cl=ci%3;
ci=ciXhb;

ci++:
cli--;

2850 ///////////////////zi

BB SIS

2852 .~ /char
ci=0xz7:;
caa=0xz4:;
ci=ci®3;|
cl=ci*d;

&2l

—
S Sar]

H | P
PORE < S
2866 -~~~ - 1nt

AN

o 0058

sci=cisd: 2857

T

S TEST bpadt =0 x|
0042 MOV O0x29, A ZI
0043 ;ci=ci=3; (2855) =
0044 MoV A, 0x27
0045 MOV 0Dzll, A
0046 CLRA
004y ADD A, @003
0048 0JZ OzlC
0049 IMP 0z0ZB
0050 BANE @0
0051 MOV 0x27, A
0052 ;ci=ci=d; (2856)
0053 BC 003, O
0054 FERLC 0x27
0055 BC 0x03, 0
0056 ERELC 027
0057

A 7

Figure 7-7b Assembly Code in C Debug Mode with C File in Focus

You can activate and set focus C or assembly file to start debugging with such
commands as Go, Free Run, Reset, Step Into, Step Over, Step Out,
Go to Cursor, and setting/clearing breakpoints.

7.7.3 Viewing Defined Variables in Register Window

When the Show defined label in Register Window checkbox of View Setting
dialog (Option 2 View Setting) is enabled, the variables defined in register
field will display in the Register window after dumping. Note that the register
names do not appear by default, but are users defined.

==

ACC
R10
R11
R1Z
R13
R14
R15
R16
E17
ElB
E19
El4
ElEB
RlC
E1D
E1E
EIF

15
0z
0o
FF
FF
01
0o
0o
0o
05
0o
01
0o
0o
0o
0o
15

CONT
RO
RUTCC
R2PC
R3

R4

RE
kA
k7
uiltd
uiRtd
uild
EE
RC
RED
EE
EF

on
14,01
on
0035

00no1-1000
ono1-0100
ED
6F
3]
E7
cn
0o
cn
40
OF
0o
0o

icon® |FD
wlOCh | FF
wlC? | FF
uwlOCE | FF
wil0Ce |00
wlOChs |02
CB 0o
cC 0o
cD 0o
CE 0o
CF 0o

Pagel

wlOC1A
wlC17?
wlOC1E
wl0C19
wlOCl L
wlOC1E
wlOCIC
cD

CE

CF

il
BF
E7
oo
oo
oo
oo
oo
oo
EO

Figure 7-8 Register Window Showing Defined Variables

130 e Quick Workout on Tiny C Compiler

EM78 Series IDE User’s Guide

% Chapter 7

7.7.4 Reducing Codes Size in Some Cases

The defined signed variables and unsigned variables are not the same. Using
unsigned variable in some particular cases could help in reducing program code

size.

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler e 131

Chapter 7

132 e Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

% Appendix A

Appendix A

Assembly Error/
Warning Messages

A.1l Introduction

Error messages which are displayed in the Build tab of Output window are
categorized into 4 classes, i.e., Class M, Class A, Class L, and Class D. Where:

Class M error message pops out when the main program is executed
incorrectly.

Class A error message appears on the list when syntax is in errors, e.g., error
occurs during assembling.

Class L error message shows up on the list if a linking errors occurs during a
project Build or Rebuild All command execution.

Class D error message describes the errors of debugging program.

A.2 Class M: Main Program Errors Messages

1. “error MOO1: Number of opened Editor windows exceeds limit.”

Reason: Number of opened Editor windows have reached maximum
limit. Opening a new one is prohibited.

Solution: Close some of the opened files.

2. “error M002: Memory not enough to accommodate Editor Window.”

Reason: Remaining system memory size inadequate to meet Editor
window requirement.

Solution: Close opened files or application programs that are idle.

3. “error M0O03: File: [filename] already existed.”

Reason: The filename has already been created and cannot be created
again.

Solution: Rename and save again.

4. "error M0OO4: File: [filename] cannot be created."
Reason: The application is notified that the file cannot be created by O.S.

Solution: Check whether the disk is full or whether the system is stable or
otherwise.

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages e 133

Appendix A

10

11.

12.

13.

14.

%’

Reason: Only one opened project is allowed at a time by eUIDE.

. "error M0OO5: A project is currently opened."

Solution: Close the existing project before opening another one.

"error M006: Project: [filename] cannot be created."

Reason: The application is notified that the project cannot be created by
O.S.

Solution: Check whether the project is empty or not.

. "error M0O7: The file: [filename] already existed in the project."

Reason: The file has been included in the project.

Solution: Stop trying to add the file into the project.

. "error M008: File: [filename] cannot be saved."

Reason: The file cannot be saved in the disk.

Solution: Check whether the project is empty or not.

. "error M009: The project: [filename] does not conform with ELAN

project file format."
Reason: The project content is not of ELAN project format.
Solution: Create a new project file.

."error M010: The file: [filename] does not exist."

Reason: The file cannot be found in the directory.
Solution: Check whether the file exists or not.

"error MO11: The file: [filename] cannot be opened."
Reason: The file cannot be opened by O.S.
Solution: Check whether the file actually exists or not.

"error M012: The file: [filename] size is over [number]k of the max
limit of [number]k."

Reason: The file size is over the maximum size of buffer with which the
Editor window is allocated.

Solution: Partition the file into two or more segments.

"error M013: The copy size: [number], exceeds by [number]k over the
max size of [number]k."

Reason: The copy size exceeds the maximum size of the copy buffer.

Solution: Decrease the segment size of the copy content.

"error M014: Memory cannot be allocated."
Reason: System cannot allocate more memory for further use.

Solution: Close Editor windows or application programs that are idle.

134 e 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

15.

16.

17.

18.

19.

20.

21.

Appendix A

"error MO15: Line is over 250 characters."

Reason: The Editor window can only accommodate a maximum of 250
characters per line.

Solution: Split the long line into two or more lines.

"error MO16: Active file [filename] has a wrong extension name,
not .dt or .asm."

Reason: Active file filename extension must be “.dt” or “.asm”.

Solution: Change file with proper filename extension “.dt” or “.asm”.

"error MO17: File to be assembled, not found."
Reason: Cannot find the file to be assembled.

Solution: Select and provide a file to be assembled.

"error M018: Project file must be created."
Reason: No project is available.

Solution: Open or create a project.

"error MO19: Number of opened Editor windows exceeds limit.”

Reason: Number of opened Editor windows have reached maximum
limit. Opening a new one is prohibited.

Solution: Close some of the opened files.

"error M020: No active Editor window."
Reason: The Editor window is not currently selected.

Solution: Select Editor window.

"error M021: Text field must be input with characters."
Reason: The text field cannot be empty.

Solution: Input characters.

A.3 Class A: Assembler Errors/Warnings Messages

1.

"error A0OO1: Cannot find the [filename] file."
Reason: The file cannot be found in the directory.

Solution: Check whether the file actually exists in the directory.

"error A002: Main and subroutine programs cannot define the [label
name] local label."

Reason: The local label (preceded by a dollar sign “$”") cannot be defined
in the main and subroutine programs.

Solution: Remove the local label from the main or subroutine program.

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages e 135

Appendix A %

3. "error A0O3: The syntax format should be: operation
[operand][,operand]."

Reason: The syntax format of the statements did not follow the
“operation [operand][,operand]” format.

Solution: Correct the syntax error by abiding to the proper format.

4. "error A004: The label [label name] has already been defined."

Reason: Each label must be unique and cannot be defined more than
once.

Solution: Redefine with another label name.

5. "error A005: The EQU syntax is: label EQU operand."
Reason: The EQU syntax is in error.

Solution: Correct error with the proper syntax.

6. "error A006: The INCLUDE nest depth is over 256."
Reason: The maximum depth for using “INCLUDE” is 256.
Solution: Reduce the depth of “INCLUDE”.

7. "error A007: The IF conditional expression is in error."
Reason: The expression of “IF conditional” is in error.

Solution: To correct the expression of “IF conditional”.

8. "error A008: Attempt is made to divide by zero."
Reason: The expression where number is divided by zero is invalid.

Solution: Modify the expression.

9. "error A009: The assembler does not support floating point number."
Reason: Expression with floating point number is not supported.

Solution: Change the floating point into integer number.

10. "error A010: The symbol [symbol name] is not defined."
Reason: The symbol is not defined.

Solution: Provide the required symbol definition.

11. "error AO11: The macro name [macro name] has already been
defined."

Reason: Each macro name must be unique and cannot be defined more
than once.

Solution: Redefine with another macro name.

136 e 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

12.

13.

14.

15.

16.

17.

18.

19.

20.

Appendix A

"error A012: The parameter name [parameter name] is identical with
label."

Reason: The parameter name and label must be unique to each other.

Solution: Redefine the parameter name.

"error A013: The same parameter name [parameter name] appears
twice."

Reason: Each parameter name in the macro definition must be unique and
cannot be defined more than once.

Solution: Redefine the redundant parameter name.

"error A014: The number of actual parameter does not match with
formal parameter."

Reason: The number of actual parameter and the number of formal
parameter does not match.

Solution: Change the actual or formal parameter number to make them
match with each other.

"error A015: The parameter number [number] does not exist."
Reason: The position of actual parameter is not defined.

Solution: Define the actual position number of the actual parameter.

"error A016: The external symbol [symbol name] has identical name
with the defined label."

Reason: The external symbol name and label must be unique to each other

Solution: Redefine the internal defined label.

"error AO17: Address of ORG is in error."
Reason: The defined ORG address is in error.

Solution: Redefine the ORG with proper address.

"error A018: MACEXIT cannot be set outside macro."

Reason: The “MACEXIT” instruction cannot be set outside the macro
definition.

Solution: Remove the “MACEXIT” instruction.

"error A019: Parameter must be a string variable."
Reason: The formal parameter must be defined as string.

Solution: Change the formal parameter to string.

"error A020: Memory cannot be allocated."
Reason: O.S. cannot allocate extra memory.

Solution: Close opened Editor windows or applications that are currently
redundant.

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages e 137

Appendix A

21.

22.

23.

24.

25.

26.

27.

28.

29.

%’

"error A0O21: The source statements exceed by [number] lines."
Reason: The line number of source file is over the system default limit.

Solution: Split the program into two or more small programs.

"error A022: The tree is in error because of parsing error."
Reason: The program syntax line is in error.

Solution: Rewrite the program line.

"error A023: [allocated memory type] memory is faulty when memory
is allocated."

Reason: O.S. cannot allocate extra memory.

Solution: Close active Editor windows or applications that are currently
redundant.

"error A024: Assembler variable setting must be an integer value."

Reason: The result of expression in the right side of “SET” instruction must
be an integer.

Solution: Change the expression.

"error A025: ORG address must be an integer value."
Reason: The address of ORG must be an integer.

Solution: Rewrite the address expression of “ORG” instruction.

"error A026: The PC [number] address is over the [number] ROM
size."

Reason: The program counter address exceeds the program ROM size.

Solution: Check program for error.

"error A027: The assembler exceeds max. pass [number]."
Reason: The assembler pass is over the maximum default pass.

Solution: Check the assembler for error.

"error A028: The operand [number] value does not include the valid
data."

Reason: The operand value is invalid.

Solution: Change the operand value.

"error A029: The [number] address is in conflict."
Reason: The program address is in conflict with another address.

Solution: From Menu Bar, click Edit = Find to find the other conflicting
address in the list file; then update the address of the program
position.

138 e 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

% Appendix A

30. "error A030: The file [filename] cannot be opened."
Reason: The file cannot be opened.

Solution: Check whether the file actually exists or misplaced.

31. "error A031: The file configuration read error."
Reason: The format of the configuration file is not correct.

Solution: Setup eUIDE software again.

32. "error A032: The file [filename] cannot be opened."
Reason: The file cannot be opened.

Solution: Check whether the file actually exists or misplaced.

33. "error A0O33: The macro is not defined."
Reason: The macro name is not defined.

Solution: Define a new macro or change a macro name.

34. "error A034: The expression cannot be calculated."
Reason: The format of the expression is in error.

Solution: Modify expression to correct the format.

35. "error A035: The operation [operation name] is not defined."
Reason: The operation is not defined by eUIDE.
Solution: Check the eUIDE user menu.

36. "error A036: The PUBLIC or EXTERN label [label name] must be
address label."

Reason: The label defined by “PUBLIC” or “EXTERN” instruction is
not an address label as required.

Solution: Remove the “PUBLIC” or “EXTERN” instruction.

37."error A0O37: The operand value cannot be calculated."
Reason: The operand expression format is not correct.

Solution: Correct the operand expression.

38. "error A038: The symbol [symbol name] is not extern symbol."
Reason: The symbol is not defined as internal or external as required.

Solution: Redefine the symbol accordingly.

39. "error A039: The reference number is over the [number] limit."

Reason: The reference number in the “PUBLIC” or “EXTERN”
instruction is over maximum limit.

Solution: Partition the instruction into two or more lines.

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages e 139

Appendix A

40.

41.

42.

43.

44,

45.

%ZI’

"error A040: The length of filename [filename] exceeds 256."
Reason: The filename length of over 256.

Solution: Revise the filename or directory.

"Warning A050: The symbol length exceeds 32."
Reason: The length of the variable is over 32.

Solution: Change the variable length to within limit.

"Warning A051: The number of messages is over 500"
Reason: The number of messages exceeds 500.

Solution: Decrease the number of the messages to within 500.

"Warning A052: Use the [number] to express [number]"

Reason: Transform the negative number to hexadecimal.

"Warning A053: The target address of “Icall” or “Ijmp” instruction is
not over page ([number K])"

Reason: The target address and “call” or “ymp” instruction is located in
the same page.

"Warning A054: [label name] :unreferenced variable."

Reason: The variable not applicable with the project.

A.4 Class

1.

L: Linker Error Messages

"error LOO1: Memory of [stack type] stack overflows."
Reason: O.S. cannot allocate extra memory.

Solution: Close idle Editor window, or close inactive application.

"error LO02: The file [filename] cannot be found."
Reason: The file cannot be found.

Solution: Check whether the file actually exists or missing.

"error LO03: The Object file format does not conform to ELAN object
file format."

Reason: The object file format does not agree with ELAN object file
format.

Solution: Reassemble the source file.

"error LOO4: Symbol [symbol name] is not defined."
Reason: The symbol is not defined.
Solution: Define the symbol.

140 e 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

10.

11.

Appendix A

"error LOO5: Public symbol [symbol name] is in conflict."
Reason: The public symbol is defined more than once.

Solution: Redefine the public symbol.

"error L006: ROM address [number] is in conflict."
Reason: The program address is in conflict with another address.

Solution: From Menu Bar, click Edit = Find to find the other conflicting
address in the list file; then update the address of the program
position.

"error LOO7: The file [filename] cannot be created."

Reason: The file cannot be created.

Solution: Check whether the disk is full or whether the system is unstable.

"error LOO8: Line [number]: The machine address [number] exceeds
ROM size [number]."

Reason: The program address size exceeds the ROM size.

Solution: Decrease the program code size.

"error LO09: No project file is active."
Reason: No project is opened.

Solution: Open or create a project.

"error LO10: No Output window is found."
Reason: Output window is not opened.
Solution: Click View = Output to display the Output window.

“Warning L020: The target address has no code.

Reason: The target address of jump instruction has no code.

A.5 Class

1.

D: Debugger Error Messages

"error DO0O1: The ICE memory is in error ."
Reason: The ICE SRAM is in error.
Solution: Change the ICE SRAM.

"error DO02: CDS size = [number] does not match with ROM size =
[number]."

Reason: The CDS size is not the same as the ROM size.

Solution: Check the project target microcontroller type to see whether it is
the same type as the eUICE system defined microcontroller.

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages e 141

Appendix A

10.

11.

%’

"error DO03: The project MCU type [type name] does not match with
[ICE name] ICE."

Reason: The project target MCU is not compatible with the eUICE
system development tool MCU

Solution: Create a new project or change to compatible ICE.

"error DO04: A line from the file does not convert to machine
address."

Reason: The program line failed to assemble.

Solution: Check the syntax of the program line for error.

"error DO05: The breakpoint group number is over 64."
Reason: The breakpoint group number is over 64.

Solution: Remove the extra breakpoint groups.

"error DO06: The ICE is not properly connected to PC."
Reason: Interface between ICE and PC failed.

Solution: Check power supply, ICE crystal, printer port/USB connection,
etc.

"error DOQ7: The printer/USB port is not connected."
Reason: The printer/USB port is not connected.
Solution: Check power supply, printer/USB port connection, etc.

"error DO08: The number is invalid."
Reason: The number is invalid.

Solution: Rewrite the number expression.

"error DO09: The number of messages is over [number]."
Reason: The number of messages is over the Output window capacity.

Solution: Decrease the number of defined messages, such as
“MESSAGE” instructions.

"Warning D010: The address [number] does not match with the
source file."

Reason: The program address does not match with the source file line.

Solution: Add the program source of the address, or check whether the
crystal is normal or not.

"Warning D011: Memory checked is in error."
Reason: The ICE SRAM memory is in error.

Solution: Change the ICE SRAM, or check whether the crystal is normal
or not.

142 e 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Appendix A

"error D012: Syntax error."
Reason: The source file syntax has a severe error.

Solution: Correct the source file.

"error D013: Memory address [number] is in error !"
Reason: The address of ICE SRAM is in error.
Solution: Change the ICE memory.

"error D014: Cannot find the breakpoint address of [program line]."
Reason: The breakpoint line does not have program address.

Solution: Redefine the breakpoint.

"error DO15: The number of symbols is over [number]."
Reason: The defined number of symbols exceeds limit.

Solution: Partition the program into two or more small programs

"error DO16: Dump program before adding label to watch."
Reason: Program has to be dumped first before adding label to watch.

Solution: Dump program to ICE, then add label to watch.

"error DO17: Trace log is empty."
Reason: No data found during Trace Log (F2) operation.

Solution: Stop executing the Trace Log operation.

"error DO18: No trace item in trace log."
Reason: No data found during Trace Log (F2) operation.

Solution: Stop executing the Trace Log operation.

"error D019: Stack overflow. The stack number [number] exceeds the
max number [number]."

Reason: The stack went over the hardware design capacity.

Solution: Decrease the number of calls.

"error D020: The file: [filename] does not exist. "
Reason: The file cannot be found in the directory.

Solution: Check whether the file exists or not.

"Warning D021: External Memory is in error."
Reason: The external ICE SRAM memory is in error.

Solution: Change the external ICE SRAM, or check whether the crystal is
normal or not.

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages e 143

Appendix A %

22. "error D022: File [filename] was modified by user.
Can't read anymore. Please "Rebuild All."

Reason: The file has been modified.

Solution: Execute "Rebuild All" command.

23. "error D023: File [filename] does not exist.
Execute “Rebuild All” to generate the file."

Reason: The file cannot be found in the directory.

Solution: Execute "Rebuild All" command.

24. "error D024: No file exists in [filename] project."
Reason: The project is empty.

Solution: Add file into project.

144 e 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

%

l7a2id

Appendix B
C Conversion Table

Appendix B

B-1 Conversion between C and Assembly Codes

The assembly code was generated by the eUIDE.

Description

C Statement
Example

Assembly Code

Conversion Rate
(Compiler's Code Size / General

Integer Variable

intVarl = OxFF;

MOV A, @OxFF
MQV %intVarl, A

User’s Code Size * 100%)
100% (2 /2 * 100)

intVar2 = intvari,;

MOV A, %intVarl
MOV %intVar2, A

100% (2 / 2 * 100)

Character Variable

charVarl = OxFF;

MOV A, @O0xff
MOV %charVarl, A

100% (2 / 2 * 100)

charvVar2 = intVari;

MOV A, %charVarl
MOV %charVar2, A

100% (2 / 2 * 100)

Short Variable

shortVarl = 0x1234;

MOV A, @0x34

MOV %shortVarl, A
MOV a, @0x12

MOV %shortVarl+1, A

100% (4 / 4 * 100)

shortVar2 = shortVari;

MOV A, %shortVarl
MOV %shortVar2, A
MOV A, %shortVarl+1
MOV %shortVar2+1, A

100% (4 / 4 * 100)

Long Variable

longVarl = 0x123456;

MOV A, @0x56

MOV %longVarl, A
MOV A, @0x34

MOV %longVarl+l, A
MOV A, @0x12

MOV %longVarl+2, A

100% (6 / 6 * 100)

longVar2 = longVarl

MOV A, %longVarl
MOV %longVar2, A
MOV A, %longVarl+1
MOV %longVar2+1, A
MOV A, %longVarl+2
MOV %longVar2+2, A

100% (6 / 6 * 100)

EM78 Series IDE User’s Guide

16BC Conversion Table e 145

Appendix B

Description

C Statement
Example

Assembly Code

Conversion Rate

(Compiler’s Code Size / General
User’s Code Size * 100%)

For loop

for (i=0;i<5;it++)

CLR %i

JMP L2

L1:

L2:

INC %i

MOV A, @0x05
SUB A, 0x14
JBS 0x03,0
JMP L1

100% (7 / 7 * 100)

While statement

while (cnt 1= 1)

L1:

100% (4 / 4 * 100)

} MOV A, %cnt
XOR A, @0X01
JBS 0X03,2
JMP L1
Do-while statement do L1: 100% (4 / 4 * 100)
(N

} while (cnt I= 1);

MOV A, %cnt
MOV A, @0x01
XOR A, @0x01

JBS 0x03, 2
JMP L1
Do-while statement do L1: 100%(3/3*100)
{ INC %var_c2;
Var_c2++; DJZ %var_c1;
}while(-- var_cl); IMP L1
If-else statement unsigned int cnt; MOV A, %cnt 100% (10 / 10 * 100)
if (cnt == 0) JBS 0x03, 2
{ JMP L1
} JMP ENDIF
else if (cnt < 5) L1:
{ MOV A,@0X05
...... SUB A, %cnt
} JBC 0x03,0
else JMP ENDIF
...... JMP L2
} L2:
ENDIF

146 ¢ 16BC Conversion Table

EM78 Series IDE User's Guide

w Appendix B

Conversion Rate
Assembly Code (Compiler’s Code Size / General
User’'s Code Size * 100%)
Switch statement unsigned int cnt; MOV A,%cnt 106% (18 / 17 * 100)
switch(cnt) MOV 0X14,A
{ MOV A,0X14
case 1: XOR A,@0x01
...... JBC 0X03,2
break; JMP case 2
case 2: MOV A,0X14
...... XOR A,@0X02
break; JBC 0X03,2
case 3: JMP case 2
...... MQV A,0X14
break; XOR A,@0X3
default: JBC 0X03,2
...... JMP case 3
break; JMP default

C Statement

Description Example

Case 1:
JMP ... ENDSWITCH
Case 2:
JMP ENDSWITCH
Case 3:

JMP ENDSWITCH
Case 4:

default

ENDSWITCH
Function main() , using EM78806B 136% (19 / 14 * 100)
{ MOV A, @0x03
inti; BANK @0
i = fun(3); MOV %in, A
CALL FUN
return; MOV A, 0x10
} BANK @0
MOV %i, A
int fun(int in) RET
{

return in+1; FUN:
} MOV A, 0x14
BANK @0
MOV %templ, A
MOV A,%in
MOV 0x14,A
MOV 0X10,A
MOV A,@0X01
ADD 0X10, A
MOV A,%templ
MOV 0X14,A
RET

EM78 Series IDE User’s Guide 16BC Conversion Table e 147

Appendix B

Conversion Rate

(Compiler’s Code Size / General
User’s Code Size * 100%)

C Statement
Example

Description

Assembly Code

Const array

const int myConst[5] =
{1,2,3, 4,5}

main()
{
inti;
i = myConst[3];

return;

}

; using EM78569

MOV A, @0x3D
MOV 0x19, A
MOV A, @Ox1F
MOV Ox1A, A
PAGE @OxOF
CALL 0x280
PAGE @0x00
BC 0x04, 6

BC 0x04,7
MOV 0x20, A

BC 0X03,0
RLCA Ox1A
TBL

PAGE @OxOF
JMP Ox2FE
MOV A, 0x19
TBL

RETL @O0x01
RETL @O0x02
RETL @O0x03
RETL @O0Ox04
RETL @O0x05

162% (21 /13 * 100)

Register page

unsigned int myR5P0
@0x05: rpage 0;
unsigned int myR5P1
@0x05: rpage 1;
unsigned int myR5P2
@O0x05: rpage 2;

myR5P0 = 0x12;
myR5P1 = 0x34;
myR5P2 = 0x56;

, using EM78P468N
MOV A, @0x12
BS 0X03,6

MOV 0x05, A

MOV A, @0x34
BS 0x03, 6

BC 0x03,7
MOV 0x05, A

MOV A, @0x56
BC 0x03,6

BS 0x03,7
MOV 0x05, A

100% (11 /11 * 100)

148 ¢ 16BC Conversion Table

EM78 Series IDE User's Guide

w Appendix B

C Statement Conversion Rate

Description Example Assembly Code (Compiler's Code_Size / General
User’'s Code Size * 100%)
I/O control page io unsigned int mylO6P0 ; using EM78569 100% (8 /8 * 100)
@0x06: rpage 0; MOV A, @0x00
io unsigned int mylO6P1 BC 0x03,5
@0x06: rpage 1; IOW 0x6

io unsigned int mylO7P1

@O0x07: rpage 1; MOV A, @OXFF

BS 0x03,5

mylO6P0 = 0x00; IOW 0x6

mylO6P1 = OxFF;

mylO7P1 = 0x55; MOV A, @OX55

IOW 0Ox7
RAM bank unsigned int myDatal ; using EM78569 100% (10 /10 * 100)
@0x20: bank 0; MOV A, @0x01
unsigned int myData2 BC 0x04, 6
@0x21: bank 0; BC 0x04,7
unsigned int myData3 MOV 0x20, A

@0x21: bank 1; MOV A, @0x02

MOV 0x21, A
25822; _ ;f MOV A, @0x03
myData3 = 31 BS 0x04, 6
' BC 0x04,7
MOV 0x21, A
Bit data type bit myBOR6PO BS 0x06, 0 133% (4 /3 * 100)
@0x06@0x00: rpage O; BC 0x06, 2
bit myB2R6P0 JBC 0x06, 0
@0x06@0x02: rpage 0; BS 0X06, 2
myBOR6PO = 1;
myB2R6P0 =
myBORG6PO;

EM78 Series IDE User’s Guide 16BC Conversion Table e 149

Appendix B m

Conversion Rate

Assembly Code (Compiler's Code Size / General

User’'s Code Size * 100%)
Indirect addressing indir unsigned myDatal ; using EM788068B 146% (35 / 24 * 100)
@0x30: ind 0; MOV A, @0x55
indir unsigned myData2 MOV 0x1B, A
@0x05: ind 1; MOV A, @0x30
MOV 0x18, A
myDatal = 0x55; MOV A, @0x00
myData2 = OxXAA, MOV 0x19, A
MOV A, @0x00
MOV Ox1A, A
MOV A, 0x1B
CALL INDIR
MOV A, @O0xAA
MOV 0x1B, A
MOV A, @0x05
MOV 0x18, A
MOV A, @0x00
MOV 0x19, A
MOV A, @0x01
MOV O0x1A, A
MOV A, 0x1B
CALL INDIR

C Statement
Example

Description

INDIR:
BC 0x05, 0
MOV 0x1B, A
MOV A, Ox1A
JBS 0x03, 2
JMP 0x081
MOV A, 0x18
IOW 0x9
MOV A, 0x1B
IOW OxA
RET

LCDRAM:
MOV A, 0x18
MOV 0xO0A, A
MOV A, 0x1B
MOV 0x0B, A
RET

150 ¢ 16BC Conversion Table EM78 Series IDE User's Guide

Appendix B

Conversion Rate

Assembly Code (Compiler's Code Size / General
User’s Code Size * 100%)

C Statement
Example

Description

Bitwise operation
(all variables are
“unsigned int” data
type)

f=e&d,;
(f=end;)
(f=e|d)

MOV A, %e
AND A, %d
(XOR A, %d)
(OR A, %d)
MOV %f, A

100% (3 / 3 * 100)

COMA %e
MOV %f, A

100%(2/2*100)

f &=e;
(f "=e))
(fl=e)

MOV A, %e
AND %f , A

(XOR %f, A)
(OR %f, A)

100%(2/2*100)

f=e>>1,

BC 0x03,0
RRCA %e
MOV %f, A

100% (3 / 3 * 100)

f=ze<<1;

BC 0x03,0
RLCA %e
MOV %f, A

100% (3 /3*100)

>>=3;

BC 0x03,0
RRC %f
BC 0x03,0
RRC %f
BC 0x03,0
RRC %f

10096(6/6*100)

f<<=3

BC 0x03,0
RLC %f
BC 0x03,0
RLC %f
BC 0x03,0
RLC %f

1009%6(6/6*100)

f>>=4

SWAPA 0x06
AND A, @OxO0F
MOV 0x06, A

100%(3/3*100)

f<<=4

SWAPA 0x06
AND A, @OxFO
MOV 0x06, A

100%(3/3*100)

f>>=6;

SWAP 0x06
RRC 0x06
RRCA 0x06
AND A, @0x03
MOV 0x06, A

100%(5/5%100)

f<<=6;

SWAP 0x06
RLC 0x06
RLCA 0x06
AND A, @0xCO
MOV 0x06, A

100%(5/5%100)

EM78 Series IDE User’s Guide

16BC Conversion Table e 151

Appendix B

Description

C Statement
Example

Assembly Code

Conversion Rate

(Compiler’s Code Size / General

f=(e<<5) | d;

MOV A, %e
MOV 0x14, A
SWAP 0x14
RLCA 0x14
AND A, @OxEO
OR A, %d
MOV %f, A

User’'s Code Size * 100%)
100%(7/7*100)

f=(f & const.1) | const. 2

MOV A, 0x06
AND A, const. 1
OR A, const. 2
MOV 0x06, A

100%(4/4*100)

Arithmetic expression

(all variables are “int”
data type)

MOV A, %e
ADD A, %d
MOV %f, A

100% (3 / 3 * 100)

MOV A, %d
SUB A, %e
MOV %f, A

100%(3/3*100)

INC %f

100% (1 /1 * 100%)

DEC %f

100% (1 /1 * 100%)

MOV A, %a
MOV 0X1C,A
MOV A, %b
MOV 0X18, A
CLRA

L1:
ADD A, 0X1C
DJZ 0X18
JMP L1
MOV %c, A

100%(9/9*100%)

c=alb;

MOV A, %a
MOV 0x1C, A
MOV A, %b
CLR 0x18
L1:

SUB O0x1C, A
JBC 0x03,0
INC 0x18
JBC 0x03,0
JMP 0x3BB
MOV A, 0x18
MOV %c, A

1009(11/11*100%)

152 ¢ 16BC Conversion Table

EM78 Series IDE User's Guide

w Appendix B

C Statement Conversion Rate

Description Assembly Code (Compiler's Code Size / General
Example User’s Code Size * 100%)
Compound f+=e; MOV A, %e 100% (2 / 2 * 100%)
assignment (f-=e) ADD %f, A
(all variables are “int” (f&=e) (SUB %f, A)
data type) (fr=e) (AND %f, A)
(fl=e) (XOR %f, A)
(OR %f, A)
f>>=1; BC 0x03,0 100% (2 / 2 * 100%)
RRC %f
fe<=1 BC 0x03,0 100% (2 / 2 * 100%)
RLC %f

EM78 Series IDE User’s Guide 16BC Conversion Table e 153

Appendix B

154 ¢ 16BC Conversion Table EM78 Series IDE User’'s Guide

Appendix C

fm

Appendix C

Frequently Asked
Questions (FAQ)

C.1 FAQ on Assembly

1. Q:
A:

ICE cannot connect to PC

Please check the following steps:

Step 1 Check the power supply with output around the voltage range of
17~23V.

Step 2 Check the printer/USB cable between ICE and PC.
Step 3 Check the oscillator on the hardware.

Step 4 From the Option menu, choose ICE code option. Check the type
of oscillator in the code option.

Step 5 If the problem still exists, then check again with another PC.
Step 6 Repeat from Step 1.
Step 7 If it is still not solved, please call ELAN.

: The connection from ICE to PC is successful, but program dumping

fails.

Please check the following steps:

Step 1 Click Option = ICE Code Setting. Then, check the type of
oscillator in the code option.

Step 2 Check whether the type of MCU selected in software is the same
as that in hardware.

: After checking ICE memory and found memory is in error.

: Please check the following steps:

Step 1 Click Option > ICE Code Setting. Then, check the type of
oscillator in the code option.

Step 2 Check whether the type of MCU selected in software is the same
with that in hardware.

Step 3 Change ICE SRAM.

EM78 Series IDE User’s Guide 18BFrequently Asked Questions (FAQ) e 155

Appendix C

%ﬂ]

: When trying to reconnect the same ICE with PC, why does the

execution become slower and slower?

: The communication timing between ICE and PC is stretched when you

repeat the connection several times.

: Why “Step Into” will not execute?

Check whether the type of MCU selected in software is the same with
that in hardware.

: If the source files are located in Novell file server, why does the

program is reassembled again at each execution?

It is caused by the time difference between the PC and server. It is
therefore, recommended to locate all source files in the local disk of your
computer. Whether you are connected to network or not, does not
matter.

C.2 FAQon Tiny C Compiler

1.

Q:

QP ERZ

P ZTRZ

S

What is the maximum number of the function parameters?

It depends on the RAM bank size (about 32 or 31 bytes).

In a function, what is the maximum depth of the function call?

It depends on the hardware stack depth or size.

What is the maximum array dimension as well as maximum array
element?

It depends on the RAM bank size (about 32 or 31 bytes).

Is there any error message when the code exceeds the ROM size?

Yes, the linker will report an allocation error.

In a high level interrupt subroutine, can I allocate the address in the
ROM? (e.g., using “page” data type, putting “ asm{ org xxx}”
before a subroutine, etc.)

No! This may cause unpredictable error.

: Is “static” used in the same way as in ANSI C?

¢ Yes.

156 e 18BFrequently Asked Questions (FAQ) EM78 Series IDE User’s Guide

Appendix C

10.

(=)

11. Q:

12. Q:

: Is there any error message in case I define too many variables in the

“const” that exceeds the ROM space?

¢ Yes, the linker will report an allocation error.

: How do I declare the variable in *.h file and use such variable in

several *.c files?

: Declare an *.h file variable as shown in the following example:

extern 1o unsigned int DIRPORT6;

Then in *.c file, write the variable as shown below (you need to write in
just one *.c file only):

io unsigned int DIRPORT6 @0x06: iopage O;

: When should I change any program page or bank?

If you are just developing your program in C language, you do not have
to change any program page, register page, ram bank, and so on.
However, if you are using inline assembly in your program, you need to
manually change, save, and restore page or bank.

: How do I know how many stacks I have called?

In C development environment, after compiling, you can find the
resulting function call depth status in the Information tab of Output
window.

Does the C compiler only occupies 0x10~0x1F of the general
purpose ram?

Well, the C compiler generally occupies 0x10~0x1F of the general
purpose register. However, if some arguments occur in call functions,
the compiler will use some others ram in 0x20~0x3F, Bank 0 ~ Bank 3.
So, it is suggested that you use global variables to replace arguments in
call function.

Always take note that some ram spaces are used in the interrupt save
procedure and interrupt service procedure if these ram spaces are not in
used.

Does the C compiler support EM78P510N?

: TCC2 supports all EM78 series ICs except EM78x680 and EM78x611.

EM78 Series IDE User’s Guide 18BFrequently Asked Questions (FAQ) e 157

Appendix C

13. Q:
A:

14. Q:

15. Q:

%ﬂ

How do I use macro with variable?

Follow the example below:

10 unsigned int P6CR@Ox06:1opage O;
#define set output(port, bit) _asm{ i1or port};\

_asm{ and a,@(~(1<<bit))};\
_asm{ iow port)

set_output(%P6CR,0x04);

Does C Compiler supports all assembly instruction?

: TCC2 supports all assembly instruction. However, some instructions

have to be implemented in inline assembly format, such as MUL, TBRD,
TBWD, and MOV R, R.

How can I clear all ram in all banks?

: There are two key points in this issue. One is to keep Bit 5, R4, as 1. The

other point is to switch the bank correctly. But some ICs use a
non-global register to switch ram bank, such as EM78P510N. So users
need to understand its particular characteristics to avoid error. For
example:

unsigned Int 1RO:0x0:rpage O;
unsigned int RSR:0x4:rpage O;

unsigned Int BRSR:0x5:rpage O;
unsigned int 1:0x11:rpage O;

Ffor(i=0;i<0x8;i++)

{
BRSR=i ;
For (RSR=0xFF ; RSR>=0XE0; RSR--)
{
iR0=0;
}
}

158 e 18BFrequently Asked Questions (FAQ) EM78 Series IDE User’s Guide

mailto:P6CR@0x06:iopage

%ﬂ

Appendix C

C.4 Contacting ELAN FAE

For customer service assistance on UICE hardware or UIDE software problems,
please contact ELAN FAE engineer at following address:

ELAN

MICROELECTRONICS CORPORATION
No. 12, Innovation 1°' Rd.,

Hsinchu Science Park

Hsinchu City, Taiwan 3076
TEL:886-3-5639977
http://www.emc.com.tw

XERFRMDERAF
YN = FT R =k e F X S H# R —iE
EHKE 3 E

F1i%:009 86 755 2601-0565

M ak: http://lwww.emc.com.tw

EM78 Series IDE User’s Guide

18BFrequently Asked Questions (FAQ) e 159

Appendix C

160 e 18BFrequently Asked Questions (FAQ) EM78 Series IDE User’s Guide

% Appendix D

Appendix D

UICE Hardware
Description

D.1 UICE (USB) and its Major Components/Functions
o I A 2 g A g 8

eﬁnwf 4= W

| [R ‘:p

PR

e
m

:;'.
b
-
| 3
n
| B
n
‘ -
m

Figure D-1 EM78 Series UICE Main Board

EM78 Series IDE User’s Guide 20BUICE Hardware Description e 161

Appendix D

Where:
Component Function
USB B type connector (connects to PC)
B DC power adaptor connector and switch (supports all ICE power needs)
C ROMLESS program data bus connector (connects to ROMLESS board)
D Power select jumper (Close: system vv_iII work in 5V,
Open: system will support 3.3V)
E ROMLESS program address bus and relative control signal connector
(connects to ROMLESS board)
E C8051 ISP port .
(connects to PC through C8051 ISP download cable to update UICE firmware)
G System power LED display
H UICE free run LED display

NOTE

1. When changing the UITxxxx ROMLESS board on UICE, be sure the UICE power is
OFF and the USB connector is disconnected before making the change.

2. You must check to ensure the target system power is of 3.3V or 5V application before
turning on UICE power. If your target system is of 3.3V application, the JP2
(Component “D” in the above figure) on UICE board must be at open position and at
close position if target system is of 5V before turning on the UICE power.

D.2 Special Note on eUIDE Software and UIT660N

eUIIDE version 1.00.13 and later, supports UIT660N. It does NOT support
IT660N

eUIIDE version 1.00.12 and previous versions, supports IT660N. It does not
work on UIT660N

162 ¢ 20BUICE Hardware Description EM78 Series IDE User’s Guide

% Appendix E

Appendix E

Library Application
Notes

E.1 C Library

The C library cannot be called by the assembly project. At the same time, the
assembly library cannot be called by the C project.

Because of the linker limitation, this function cannot be provided.

E.2 Assembly Library

The Assembly library can only use absolute addressing

Because of the assembly assembler limitation, it cannot relocate the addresses.
You have to write “org OxXXX*” clearly in front of the assembly source file
when writing assembly library. But you do not need to write the address
definition when you use the pseudo instructions XCALL/XJMP instead of all
CALL/JMP instructions in the assembly library source codes.

EM78 Series IDE User’s Guide 22BLibrary Application Notes e 163

Appendix E

164 e 22BLibrary Application Notes EM78 Series IDE User’s Guide

% Appendix F

Appendix F
C Standard Library

F.1 Character Class Tests: “ctype.h”

F.2 String Functions: “string.h”

EM78 Series IDE User’s Guide 24BC Standard Library e 165

Appendix F %

F.3 Mathematical Functions: “math.h”

F.4 Utility Functions: “stdlib.h”

166 e 24BC Standard Library EM78 Series IDE User’s Guide

% Appendix F

F.5 Others

F.5.1 Variable Argument Lists: “stdarg.h”

F.5.2 Limits: “limits.h” and “float.h”

B “limits.h” define the following symbols:

EM78 Series IDE User’s Guide 24BC Standard Library e 167

Appendix F %

B “float.h” define the following symbols:

F.6 Manual of Functions

F.6.1 Character Classification Routines —
isalnum, isalpha, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit

B Synopsis:

#include “ctype.h”
int isalnum(int c);
int isalpha(int c);
int iscntri(int c);
intisdigit(int c¢);
int isgraph(int c);
intislower(int c);
intisprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
intisxdigit(int ¢);
char tolower(int c);

168 e 24BC Standard Library EM78 Series IDE User’s Guide

Appendix F

B Description:

The following functions check whether “c,” which must have the value of an
unsigned character or EOF, falls into a certain character type according to its
current location.

isalnum() Check for an alphanumeric character. It is equivalent to (isalpha(c)
|| isdigit(c)).

isalpha() Check for an alphabetic character in the standard "C" location. It is
equivalent to (isupper(c) || islower(c)). In some locations, there may
be additional characters for which isalpha() is true (letters which are
neither upper case nor lower case).

iscntrl() Check for a control character

isdigit() Check for a digit (0 through 9)

isgraph() Check for any printable character except space
islower() Check for a lower-case character

isprint() Check for any printable character including space

ispunct() Check for any printable character which is not a space nor an
alphanumeric character.

isspace() Check for white-space characters. In the "C" and "POSIX"
locations, these are: space, form-feed ('\f'), newline ("\n'),
carriage return ("\r'), horizontal tab ("\t'), and vertical tab ("\v').

isupper() Check for an uppercase letter

isxdigit() Check for a hexadecimal digits, i.e.,oneof0123456789%abcd
efABCDEF.

B Return Value:

The nonzero values are returned if the character “c” falls into the tested class,
otherwise, a zero value is returned.

NOTE
The details of what characters belong to which class depends on the current location.
For example, isupper() will not recognize an A - umlaut as an uppercase letter in the
default “C” location.

B See Also:

tolower, toupper (Section F.6.2 below)

EM78 Series IDE User’s Guide 24BC Standard Library e 169

Appendix F %ﬂ

F.6.2 Convert Letter to Upper or Lower Case —
tolower, toupper

B Synopsis:

#include “ctype.h”

char toupper(int c);

char tolower(int c);

B Description:

toupper() converts the letter “’c” to upper case, if possible.

tolower() converts the letter “c” to lower case, if possible.

If “c” is not an unsigned character value or EOF, the behavior of these functions
is undefined.

B Return Value:

The value returned is that of the converted letter, or “c” if the conversion was
not successful.

B See Also:

isalpha (Section F.6.1)

F.6.3 Copy a String — strcpy, strncpy
B Synopsis:
#include “string.h”

int strcpy(char * to, char * from);
int strncpy(char * to, char * from, int size);

B Description:

strcpy() Copies the string pointed at by “from” (including the terminating \0’
character) to the array pointed at by “to”. The strings should not
overlap, and the destination string “to” must be large enough to
accommodate the copied string.

strncpy() Function is similar with the above, except that no more than n bytes
of “from” are copied. Thus, if there is no null byte among the first n
bytes of “to,” the result will not be null-terminated.

In the case where the length of “from” is less than that of n, the
remainder of “to” will be padded with nulls.

170 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

% Appendix F

B Return Value:

The strepy() and strnepy() functions return a pointer to the destination “to”
string.

F.6.4 Link Two Strings — strcat, strncat
B Synopsis:

#include “string.h”
int strcat(char * to, char * from);
int strncat(char * to, char * from, int size);

B Description:

strcat() Append the “from” string to the “to” string overwriting the \0’
character at the end of “to,” and then add a terminating ‘\0’
character. The strings should not overlap, and the “to” string must
have enough space to accommodate the result.

strncat() Function is similar with the above, except that only the first n
characters of “from” are appended to “to.”
B Return Value:

The strcat() and strncat() functions return a pointer to the resulting “to” string.

F.6.5 Compare Two Strings — strcmp, strncmp
B Synopsis:

#include “string.h”
int strcmp(char * sl, char * s2);
int strncmp(char * sl1, char * s2, int len);

B Description:

strcmp() Compare the two strings “s1” and “s2.” It returns an integer less
than, equal to, or greater than zero if “s1” is found to be less than,
matches, or greater than “s2” respectively.

strncmp() Function is similar with the above except it only compares the first
(at most) n characters of “s1”and “s2.”
B Return Value:

The stremp() and strnemp() functions return an integer less than, equal to, or
greater than zero if “s1” (or the first n bytes thereof) is found to be less than,
matches, or greater than “s2” respectively.

EM78 Series IDE User’s Guide 24BC Standard Library e 171

Appendix F %ﬂ

F.6.6 Locate Character in String — strchr, strrchr
B Synopsis:
#include “string.h”

int strchr(char * ptr, int chr);
int strrchr(char * ptr, int chr);

B Description:

strchr() Return a pointer to the first occurrence of the character “chr” in the
“ptr” string.

strrchr() Return a pointer to the last occurrence of the character “chr” in the
“ptr” string.

NOTE

"character" means "byte" - these functions do not work with wide or multi-byte
characters.

B Return Value:

The strchr() and strrchr() functions return a pointer to the matched character
or NULL if the character is not found.

B See Also:

strpbrk, strstr, strtok (Sections F.6.8, F.6.9, & F.6.11 respectively)

F.6.7 Search a String of a Specified Set of Characters —
strspn, strcspn

B Synopsis:
#include “string.h”

int strspn(char * s1, char * s2;
int strcspn(char * s1, char * s2);

B Description:

strspn() Calculate the length of the initial segment of “s1”” which consists
entirely of characters in “s2” string.

strecspn() Calculate the length of the initial segment of “s1”” which consists
entirely of characters not found in “s2” string.

172 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

%ﬂ

Appendix F

B Return Value:

The strspn() function returns the number of characters in the initial segment of
“s1” which consists only of characters that match those of “s2” string.

The strespn() function returns the number of characters in the initial segment of
“s1” which consists of characters that do not match with the “s2” string.

B See Also:

strpbrk, strstr, strtok (Sections F.6.8, F.6.9, & F.6.11 respectively)

F.6.8 Search a String of Any Set of Characters —
strpbrk

B Synopsis:

#include “string.h”

int strpbrk(char * sl1, char * s2);

B Description:

strpbrk() Locate the first occurrence in “s1” string of any of the characters
stated in the “s2” string.

B Return Value:

The strpbrk() function returns a pointer to the character in “s1” string that

matches with the characters in “s2” string. Otherwise, it returns a NULL if no

such character is found.

B See Also:
strchr, strspn, strstr, strtok (Sections F.6.6, F.6.7, F.6.9, & F.6.11 respectively)

F.6.9 Locate a Substring — strstr

B Synopsis:

#include “string.h”
int strstr(char * sl, char * s2);

B Description:

strstr() Find the first occurrence of the “s2” substring in the “s1” string. The
terminating “\0” character is not compared.

EM78 Series IDE User’s Guide 24BC Standard Library e 173

Appendix F %ﬂ

B Return Value:

The strstr() function returns a pointer to the beginning of the substring that
matches with the characters in “s1” string. Otherwise, it returns a NULL if no
such substring is found.

B See Also:

strchr, strspn, strpbrk, strtok (Sections F.6.6, F.6.7, F.6.8, & F.6.11
respectively)

F.6.10 Calculate the Length of a String — strlen

B Synopsis:

#include “string.h”
int strlen(char *s);

B Description:

strlen() Calculate the length of the “s” string (excluding the terminating “\0”
character.

B Return Value:

(1Pt

The strlen() function returns the number of characters in “s” string.

F.6.11 Extract Tokens from Strings — strtok

B Synopsis:

#include “string.h”
int strtok(char * sl1, char * s2);

B Description:

strtok() Used to parse the “s1” string into tokens. The first call to strtok()
should have the “s1” string as its first argument. Subsequent calls
should have the first argument set to NULL. Each call returns a pointer
to the next token, or NULL when no more tokens are found.

If a token ends with a delimiter, this delimiting character is overwritten
with a “\0” and a pointer to the next character is saved for the next call
to strtok(). The delimiter string “s2”” may be different for each call.

NOTE

A ‘token” is a nonempty string of characters that do not occur in the string delimiter,
followed by \0’ or by a character occurring in the delimiter.

174 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

%ﬂ

Appendix F

B Return Value:

The strtok() function returns a pointer to the next token, or a NULL if there are
no more tokens.

B See Also:

strchr, strspn, strpbrk, strstr (Sections F.6.6, F.6.7, F.6.8, & F.6.9 respectively)

F.6.12 Copy Memory Area — memcpy

B Synopsis:

#include “string.h”

int memcpy(void * dl1, void * sl, int n);
B Description:

memcpy() Copy n bytes from memory area “s1” to memory area “d1”. The
memory areas should not overlap. Use memmove(3) if the
memory areas do overlapped (see Section 6.13 below).

B Return Value:

The memcpy() function returns a pointer to “d1”.

B See Also:

strepy/strncpy, memmove, (Sections F.6.3, & F.6.13 respectively)

F.6.13 Copy Memory Area — memmove

B Synopsis:

#include “string.h”
int memmove(void * dl1, void * s1, int n);

B Description:

memmove() Copy n bytes from memory area “s1” to memory area “d1”. The
memory areas may overlap.

B Return Value:

The memmove() function returns a pointer to “d1”.

B See Also:

strepy/strncpy, memepy (Sections F.6.3, & F.6.12 respectively)

EM78 Series IDE User’s Guide 24BC Standard Library e 175

Appendix F %ﬂ

F.6.14 Compare Memory Areas — memcmp

B Synopsis:

#include “string.h”

int memcmp(void *sl, void *s2, int n);
B Description:

memcmp() Compare the first n bytes between the memory areas “s1” and “s2.”
It returns an integer less than, equal to, or greater than zero if “s1”
is found to be less than, to match, or greater than “s2” respectively.

B Return Value:

The mememp() function returns an integer less than, equal to, or greater than
zero if the first n bytes of “s1” is found to be less than, to match, or be greater
than the first n bytes of “s2” respectively.

B See Also:

strcmp, strnemp (Sections F.6.5)

F.6.15 Scan Memory for a Specified Character — memchr

B Synopsis:

#include “string.h”

int memchr(void *p, int n, int v);

B Description:

memchr() Scan the first n bytes of the memory area pointed to by “p” for the
character “n”. The first byte to match “n” (interpreted as an
unsigned character) stops the operation.

B Return Value:

The memchr() functions return a pointer to the matched byte or return a NULL

if the character is not found in the given memory area.

B See Also:

strspn, strpbrk, strstr (Sections F.6.7, F.6.8, & F.6.9 respectively)

176 e 24BC Standard Library EM78 Series IDE User’s Guide

%ﬂ

Appendix F

F.6.16 Fill Memory with a Constant Byte — memset

B Synopsis:

#include “string.h”
int memset(void * pl, int c, int n);

B Description:

memset() Fill the first n bytes of the memory area pointed to by “p1” with the
constant byte “c”.

H Return Value:

The memset() function returns a pointer to the memory area “p1”.

F.6.17 Sine Function —sin

B Synopsis:

#include “math.h”
float sin(float x);

B Description:

sin() Return the sine of “x”, where “x” is given in radians.

B Return Value:

The sin() function returns a value between —1 and 1.

B See Also:

cos, tan, asin, acos, atan, atan2 (Sections F.6.18 to F.6.23 respectively)

F.6.18 Cosine Function — cos

B Synopsis:

#include “math.h”
float cos(float x);

B Description:

cos() Return the cosine of “x”, where “x” is given in radians.

B Return Value:

The cos() function returns a value between -1 and 1.

EM78 Series IDE User’s Guide 24BC Standard Library e 177

Appendix F %ﬂ

B See Also:

sin, tan, asin, acos, atan, atan2 (Sections F.6.17, F.6.19 to F.6.23 respectively)

F.6.19 Tangent Function —tan

B Synopsis:
#include “math.h”
float tan(float x);
B Description:

tan() Return the tangent of “x”, where “x” is given in radians.

B See Also:

sin, cos, asin, acos, atan, atan2 (Sections F.6.17, F.6.18, & F.6.20 to F.6.23
respectively)

F.6.20 Arcsine Function — asin

B Synopsis:

#include “math.h”

float asin(float x);

B Description:

asin() Calculate the arcsine of “x” (the inverse value of sine x). If “x” falls
outside the range of —1 to 1, asin() fails and “errno” is set.

H Return Value:

The asin() function returns the arcsine in radians and the value is

mathematically defined to be between —PI/2 and PI/2 (inclusive).

B Error Definition:

EDOM “x” is out of range.

B See Also:

sin, cos, tan, acos, atan, atan2 (Sections F.6.17 to F.6.19 & F.6.21 to F.6.23
respectively)

178 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

Appendix F

F.6.21 Arccosine Function —acos

B Synopsis:

#include “math.h”
float acos(float x);

B Description:

acos() Calculate the arccosine of “x” (the inverse value of cosine x). If “x”
falls outside the range of —1 to 1, acos() fails and “errno” is set.

B Return Value:

The acos() function returns the arccosine in radians and the value is
mathematically defined to be between 0 and PI (inclusive).

B Error Difinition:

EDOM “x” is out of range.

B See Also:

sin, cos, tan, asin, atan, atan2 (Sections F.6.17 to F.6.20 & F.6.22 to F.6.23
respectively)

F.6.22 Arctangent Function — atan

B Synopsis:

#include “math.h”
float atan(float x);

B Description:

Gy, 9,

atan() Valculate the arctangent of “x”; (the inverse value of tangent x).

B Return Value:

The atan() function returns the arc tangent in radians and the value is
mathematically defined to be between —P1/2 and PI/2 (inclusive).

B See Also:

sin, cos, tan, asin, acos, atan2 (Sections F.6.17 to F.6.21 & F.6.23 respectively)

EM78 Series IDE User’s Guide 24BC Standard Library e 179

Appendix F %ﬂ

F.6.23 Arctangent Function of Two Variables — atan2

B Synopsis:

#include “math.h”

float atan2(float y, float x);

B Description:

atan2() Calculate the arctangent of the two variables x and y. It is similar to
calculating the arctangent of y / x, except that the signs of both
arguments are used to determine the quadrant of the result.

B Return Value:

The atan2() function returns the result in radians, which is between —PI and PI

(inclusive).

B See Also:

sin, cos, tan, asin, acos, atan (Sections F.6.17, to F.6.21 & F.6.22 respectively)

F.6.24 Hyperbolic Sine Function — sinh

B Synopsis:

#include “math.h”

float sinh(float x);

B Description:

sinh() Return the hyperbolic sine of x, which is defined mathematically as
(exp(x) - exp(-x)) / 2.

B See Also:

cosh, tanh (Sections F.6.25 & F.6.26 respectively)

F.6.25 Hyperbolic Cosine Function — cosh

B Synopsis:

#include “math._h”
float cosh(float x);
B Description:

cosh() Returns the hyperbolic cosine of “x”, which is defined mathematically
as (exp(x) + exp(-x)) / 2.

180 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

% Appendix F

F.6.26 Hyperbolic Tangent Function —tanh

B Synopsis:

#include “math.h”
float tanh(float x);

B Description:

tanh() Return the hyperbolic tangent of “x”, which is defined mathematically
as sinh(x) / cosh(x).

B See Also:
sinh, cosh (Sections F.6.24 & F.6.25 respectively)

F.6.27 Exponential, Logarithmic, and Power Functions —
exp, log, log10, pow

B Synopsis:

#include “math.h”

float exp(float x);

float log(float x);

float loglO(Float x);

float pow(float x, float y);

B Description:

exp() Return the value of “e” (the base of natural logarithms) raised to the
power of “x”

log() Return the natural logarithm of “x”

log10() Return the base-10 logarithm of “x”

pow() Return the value of “x” raised to the power of “y

B Errors Definitions:
The log() and log10() functions return the following errors:
e EDOM The argument “x” is negative.
e ERANGE The argument “x” is zero. The log of zero is not defined.

The pow() function returns the following error:

(14

e EDOM The argument “x” is negative and “y” is not an integral
value. This would result in a complex number.

B See Also:
sqrt (Section F.6.28)

EM78 Series IDE User’s Guide 24BC Standard Library e 181

Appendix F %ﬂ

F.6.28 Square Root Function — sqrt

B Synopsis:

#include “math.h”

float sqgrt(float x);

B Description:

sqrt() Return the non-negative square root of “x”. if “x” is negative, it fails
and sets “errno” to EDOM.

B Errors Definition:

EDOM “x” is negative.

F.6.29 Ceiling Function: Smallest Integral Value Not Less
Than Argument — ceil

B Synopsis:

#include “math._h”

float ceil(float x);

B Description:

ceil() Round up “x” to the nearest integer.

H Return Value:

The rounded integer value is returned. If “x” is integral or infinite, “x” itself is
returned.

B Errors:

No errors other than EDOM and ERANGE can occur. If “x” is NaN, then NaN
is returned and “errno” may be set to EDOM.

B See Also:

floor (Section F.6.30)

182 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

% Appendix F

F.6.30 Largest Integral Value Not Greater than
Argument — floor

B Synopsis:

#include “math.h”

float floor(float x);

B Description:

floor() Round down “x” to the nearest integer.

H Return Value:

(Y34

Return the rounded integer value. If “x” is integral or infinite, “x” itself is
returned.

B Errors:

No errors other than EDOM and ERANGE can occur. If “x” is NaN, then NaN
is returned and “errno” may be set to EDOM.

B See Also:
ceil (Section F.6.29)

F.6.31 Absolute Value of Floating-Point Number — fabs

B Synopsis:

#include “math.h”
float fabs(float x);

B Description:

Fabs() Return the absolute value of the floating-point number “x”.

B See Also:
ceil, floor, abs (Sections F.6.29, F.6.30, & F.6.38 respectively)

EM78 Series IDE User’s Guide 24BC Standard Library e 183

Appendix F

%ﬂ

F.6.32 Multiply Floating-Point Number by Integral Power
of 2 — ldexp

B Synopsis:
#include “math.h”
float ldexp(float X, int pw2);

B Description:

Idexp() Return the result of multiplying the floating-point number “x” by 2
raised to the power exponent.

F.6.33 Convert Floating-Point Number to Fractional and
Integral Components — frexp

B Synopsis:

#include “math.h”
float frexp(float x, Int *pw2);

B Description:

frexp() Split the number “x” into a normalized fraction and an exponent, and
store them in “pw2”.

B Return Value:

€C,, 9

The frexp() function returns the normalized fraction. If the argument “x” is not
zero, the normalized fraction is “x” times a power of two, and is always in the
range of 1/2 (inclusive) to 1 (exclusive). If “x” is zero, then the normalized
fraction is zero and zero is stored in “pw2”.

B Example:

#include “stdio.h”

#include “math.h”

#include “float.h”

int main () {

float d = 2560;

int e;

float T = frexp(d, &e);

printfF(""frexp(%g, &) = %g: %g * %d~%wd = %g\n',
d, ¥, ¥, FLT_RADIX, e, d);

return O;

}

This program prints

frexp(2560, &e) = 0.625: 0.625 * 2712 = 2560

184 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

%ﬂ

Appendix F

B See Also:
ldexp, modf (Section F.6.32 & F.6.34 respectively)

F.6.34 Extract Signed Integral and Fractional Values
from Floating-Point Number — modf

B Synopsis:

#include “math.h”

float modf(float x, float *y);
B Description:

modf() Split the argument “x” into an integral part and fractional part, each of

[

which has the same sign as “x”. The integral part is stored in “y”.

H Return Value:
The modf() function returns the fractional part of “x”.

B See Also:
ldexp, frexp (Section F.6.32 & F.6.33 respectively)

F.6.35 Convert a String to a Float — atof

B Synopsis:

#include “stdlib._h”
float atof(char *nptr);
B Description:

atof() Convert the initial portion of the string pointed at by “nptr” to float. The
behaviour is the same as -

strtod(nptr, (char **)NULL);

except that atof() does not detect errors.

B Return Value:

The converted value.

B See Also:
atoi, atoll (Sections F.6.36)

EM78 Series IDE User’s Guide 24BC Standard Library e 185

Appendix F %ﬂ

F.6.36 Convert a String to an Integer — atoi, atol

B Synopsis:

#include “stdlib._h”
int atoi(char *s);
long atol(char *s);

B Description:

atoi() Convert the initial portion of the string pointed at by “s” to “int”.
However, atoi() does not detect errors.

atol() Behave the same way as atoi(), except that they convert the initial
portion of the string to their return type of long.

B Return Value:

The converted value.

B See Also:
atof, (Sections F.6.35)

F.6.37 Random Number Generator — rand, srand

B Synopsis:

#include “stdlib._h”

int rand(void);

void srand(unsigned int seed);

B Description:

rand() Return a pseudo-random integer between “0” and RAND MAX.

srand() Set its argument as the seed for a new sequence of pseudo-random
integers to be returned by rand(). These sequences can be repeated by
calling srand() with the same seed value.

If no seed value is provided, the rand() function is automatically
seeded with a value of “1.”
B Return Value:

The rand() function returns a value between 0 and RAND MAX. The srand()
returns no value.

186 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

Appendix F

F.6.38 Compute the Absolute Value of an Integer —
abs, labs

B Synopsis:

#include “stdlib._h”
int abs(int j);

long labs(long int j);

B Description:

(1394

abs() Compute the absolute value of the integer argument “j.

(13444

labs() Compute the absolute value of the argument ““5” with the appropriate
integer type for the function.
B Return Value:

Return the absolute value of the integer argument with the appropriate integer
type for such function.

NOTE
Attempt to take the absolute value of the most negative integer is not defined.

B See Also:
ceil, floor, fabs (Sections F.6.29 to F.6.31 respectively)

F.7 Application Notes

B The EM78 C Standard Library is applicable only to ¢ project.

B The EM78 C support 24 bits float/double type

B Float/double type = 1 sign bit + 7 bits exponent + 15 bits mantissa
|

Because the mantissa’s bit resolution is reduced, the precision will be
downgraded.

B You must take precautions of possible problems on float overflow and
underflow.

EM78 Series IDE User’s Guide 24BC Standard Library e 187

Appendix F

B To avoid space from overflowing when using ram, do not make the float
expression too complex. For example:
Float x,y,z,result;
Result = (((x*3.5)+y)/2)*5.3;
The above float expression may cause the ram space to overflow. Suggest
to revise expression as follows:
Float x,y,x,tmp,result;
Result = x*3.5;
Result +=y;
Result /=z;
Result *=5.3;

188 ¢ 24BC Standard Library EM78 Series IDE User’s Guide

	Chapter 1Introduction
	1.1 Overview
	1.2 Introduction to eUIDE Program
	1.2.1 eUIDE Main User Interface
	1.2.2 eUIDE Sub-Windows
	1.2.2.1 Project Window
	1.2.2.2 Editor Window
	1.2.2.3 Special Register Window
	1.2.2.4 Call Stack Window
	1.2.2.5 RAM Bank (General Registers) Window
	1.2.2.6 Watch Window
	1.2.2.7 Data RAM Window
	1.2.2.8 LCD RAM Window
	1.2.2.9 EEPROM Window
	1.2.2.10 Output Window

	1.2.3 eUIDE Menu Bar
	1.2.4 ToolBar
	1.2.4.1 Toolbar Icons and its Functions and Hotkeys
	1.2.4.2 Document Bar
	1.2.4.3 Status Bar

	Chapter 2
	The eUIDE Commands
	2.1 eUIDE Menu Bar and its Menu Commands
	2.1.1 File Menu
	2.1.2 Edit Menu
	2.1.2.1 Executing Find Command from Edit Menu
	2.1.2.2 Executing Find Command with Shortcut Hotkeys

	2.1.3 View Menu
	2.1.4 Project Menu
	2.1.4.1 Executing “Dump code over 64K to sram” Command

	2.1.5 Debug Menu
	2.1.5.1 “Run From” Command Sub-Menu Function Description
	2.1.5.2 “Address Breakpoint” Dialog Function Description

	2.1.6 Tool Menu
	2.1.6.1 Computing Execution Time
	2.1.6.2 Moving Data from File to SRAM (Applicable to EM78815 only)

	2.1.7 Option Menu
	2.1.7.1 Debug Option Setting
	2.1.7.2 Accelerate Reading Registers
	2.1.7.3 View Setting
	2.1.7.4 Environment Setting
	2.1.7.5 Customize…

	2.1.8 Window Menu
	2.1.9 Help Menu

	Chapter 3
	Getting Started
	3.1 Overview
	3.1.1 System Requirements
	3.1.2 Software Installation
	3.1.3 ANSI Compatibility

	3.2 Hardware Power-up
	3.3 Starting the eUIDE Program
	3.3.1 Connect Dialog
	3.3.1.1 Reconnection

	3.3.2 Code Option Dialog
	3.3.3 Accelerate Reading Registers Dialog

	3.4 Create a New Project
	3.4.1 Using the Project Wizard (Project (Project Wizard)
	3.4.2 Using the New Command (File/Project (New…)

	3.5 Add and Remove Source Files from/to Project
	3.5.1 Create and Add a New Source File for the Project
	3.5.2 Add Existing Source Files to the New Project
	3.5.3 Deleting Source Files from Project

	3.6 Editing Source Files from Folder/Project
	3.6.1 Open Source File from Folder for Editing
	3.6.2 Open Source File from Project for Editing

	3.7 Compile the Project
	3.8 Dumping the Compiled Program to ICE
	3.9 Debugging a Project
	3.9.1 Breakpoints Setting

	Chapter 4
	Assembler and Linker
	4.1 Assembler and Linker Process Flow
	4.2 Statement Syntax
	4.2.1 How to Define Label

	4.3 Number Type
	4.4 Assembler Arithmetic Operation
	4.5 Program Directives
	4.6 Conditional Assembly
	4.7 Reserved Word
	4.7.1 Directives, Operators
	4.7.2 Instructions Mnemonics

	4.8 Pseudo Instruction

	Chapter 5
	C Fundamental Elements
	5.1 Comments
	5.2 Reserved Words
	5.3 Preprocessor Directives
	5.3.1 #include
	5.3.2 #define
	5.3.3 #if, #else, #elif, #endif
	5.3.4 #ifdef, #ifndef

	5.4 Literal Constants
	5.4.1 Numeric Constant
	5.4.2 Character Constant
	5.4.3 String Constant

	5.5 Data Type
	5.6 Enumeration
	5.7 Structure and Union
	5.8 Array
	5.9 Pointer
	5.10 Operators
	5.10.1 Types of Supported Operators
	5.10.2 Prefix of Operators

	5.11 If-else Statement
	5.12 Switch Statement
	5.13 While Statement
	5.14 Do-while Statement
	5.15 For Statement
	5.16 Break and Continue Statements
	5.17 Goto Statement
	5.18 Function
	5.18.1 Function Prototype
	5.18.2 Function Definition

	Chapter 6
	C Control Hardware Related Programming
	6.1 Register Page (rpage)
	6.2 I/O Control Page (iopage)
	6.3 Ram Bank
	6.4 Bit Data Type
	6.5 Data/LCD RAM Indirect Addressing
	6.6 Allocating C Function to Program ROM
	6.7 Putting Data in ROM
	6.8 Inline Assembler
	6.8.1 Reserved Word
	6.8.2 Use of C Variable in the Inline Assembly

	6.9 Using Macro
	6.10 Interrupt Routine
	6.10.1 Interrupt Save Procedure
	6.10.2 Interrupt Service Routine
	6.10.3 Reserved Common Registers Operation

	Chapter 7
	Quick Workout on Tiny C Compiler
	7.1 Introduction
	7.2 Create a New Project
	7.3 Add a New “C” File to the Project
	7.4 Add a Second File or a New Header File to the Project
	7.5 The Main(), Interrupt Save, and Service Routine Functions
	7.6 Project Development with Interrupt
	7.7 Tips on C Compiler Debugging
	7.7.1 Speed up Debugging
	7.7.2 View Corresponding Assembly Code in C Environment
	7.7.3 Viewing Defined Variables in Register Window
	7.7.4 Reducing Codes Size in Some Cases

	Appendix A
	Assembly Error/ Warning Messages
	A.1 Introduction
	A.2 Class M: Main Program Errors Messages
	A.3 Class A: Assembler Errors/Warnings Messages
	A.4 Class L: Linker Error Messages
	A.5 Class D: Debugger Error Messages

	Appendix B
	C Conversion Table
	B-1 Conversion between C and Assembly Codes

	Appendix C
	Frequently Asked Questions (FAQ)
	C.1 FAQ on Assembly
	C.2 FAQ on Tiny C Compiler
	C.4 Contacting ELAN FAE

	Appendix D
	UICE Hardware Description
	D.1 UICE (USB) and its Major Components/Functions
	D.2 Special Note on eUIDE Software and UIT660N

	Appendix E
	Library Application Notes
	E.1 C Library
	E.2 Assembly Library

	Appendix F
	C Standard Library
	F.1 Character Class Tests: “ctype.h”
	F.2 String Functions: “string.h”
	F.3 Mathematical Functions: “math.h”
	F.4 Utility Functions: “stdlib.h”
	F.5 Others
	F.5.1 Variable Argument Lists: “stdarg.h”
	F.5.2 Limits: “limits.h” and “float.h”

	F.6 Manual of Functions
	F.6.1 Character Classification Routines – isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit
	F.6.2 Convert Letter to Upper or Lower Case –tolower, toupper
	F.6.3 Copy a String – strcpy, strncpy
	F.6.4 Link Two Strings – strcat, strncat
	F.6.5 Compare Two Strings – strcmp, strncmp
	F.6.6 Locate Character in String – strchr, strrchr
	F.6.7 Search a String of a Specified Set of Characters – strspn, strcspn
	F.6.8 Search a String of Any Set of Characters –strpbrk
	F.6.9 Locate a Substring – strstr
	F.6.10 Calculate the Length of a String – strlen
	F.6.11 Extract Tokens from Strings – strtok
	F.6.12 Copy Memory Area – memcpy
	F.6.13 Copy Memory Area – memmove
	F.6.14 Compare Memory Areas – memcmp
	F.6.15 Scan Memory for a Specified Character – memchr
	F.6.16 Fill Memory with a Constant Byte – memset
	F.6.17 Sine Function – sin
	F.6.18 Cosine Function – cos
	F.6.19 Tangent Function – tan
	F.6.20 Arcsine Function – asin
	F.6.21 Arccosine Function – acos
	F.6.22 Arctangent Function – atan
	F.6.23 Arctangent Function of Two Variables – atan2
	F.6.24 Hyperbolic Sine Function – sinh
	F.6.25 Hyperbolic Cosine Function – cosh
	F.6.26 Hyperbolic Tangent Function – tanh
	F.6.27 Exponential, Logarithmic, and Power Functions – exp, log, log10, pow
	F.6.28 Square Root Function – sqrt
	F.6.29 Ceiling Function: Smallest Integral Value Not Less Than Argument – ceil
	F.6.30 Largest Integral Value Not Greater than Argument – floor
	F.6.31 Absolute Value of Floating-Point Number – fabs
	F.6.32 Multiply Floating-Point Number by Integral Power of 2 – ldexp
	F.6.33 Convert Floating-Point Number to Fractional and Integral Components – frexp
	F.6.34 Extract Signed Integral and Fractional Values from Floating-Point Number – modf
	F.6.35 Convert a String to a Float – atof
	F.6.36 Convert a String to an Integer – atoi, atol
	F.6.37 Random Number Generator – rand, srand
	F.6.38 Compute the Absolute Value of an Integer – abs, labs

	F.7 Application Notes

