

EM78 Series
Microcontrollers

 INTEGRATED
DEVELOPMENT
ENVIRONMENT

USER’S GUIDE
 Doc. Version 1.1

(Applicable to eUIDE Version 1.0 & later)

ELAN MICROELECTRONICS CORP.
May 2010

Trademark Acknowledgments
IBM is a registered trademark and PS/2 is a trademark of IBM.
Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2009 ~ 2010 by ELAN Microelectronics Corporation
All Rights Reserved
Printed in Taiwan

The contents of this User’s Guide (publication) are subject to change without further notice. ELAN Microelec-
tronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this publication. ELAN
Microelectronics makes no commitment to update, or to keep current the information and material contained in
this publication. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or
other inaccuracies in the information or material contained in this publication. ELAN Microelectronics shall not
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information
or material.

The software (eUIDE) described in this publication is furnished under a license or nondisclosure agreement, and
may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of
ELAN Microelectronics product in such applications is not supported and is prohibited.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation 1st Road
Hsinchu Science Park
Hsinchu, TAIWAN 30076
Tel: +886 3 563-9977
Fax: +886 3 563-9966
webmaster@emc.com.tw
http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics
Corporation, Ltd.
Flat A, 19F., World Tech Centre 95
How Ming Street, Kwun Tong
Kowloon, HONG KONG
Tel: +852 2723-3376
Fax: +852 2723-7780

USA:

Elan Information
Technology Group (U.S.A.)
PO Box 601
Cupertino, CA 95015
U.S.A.
Tel: +1 408 366-8225
Fax: +1 408 366-8225

Shenzhen:

Elan Microelectronics
Shenzhen, Ltd.
3F, SSMEC Bldg., Gaoxin S. Ave. I
Shenzhen Hi-tech Industrial Park
(South Area), Shenzhen
CHINA 518057
Tel: +86 755 2601-0565
Fax: +86 755 2601-0500
elan-sz@elanic.com.cn

Shanghai:

Elan Microelectronics
Shanghai, Ltd.
#34, First Fl., 2nd Bldg.,
Lane 122, Chunxiao Rd.
Zhangjiang Hi-Tech Park
Shanghai, CHINA 201203
Tel: +86 21 5080-3866
Fax: +86 21 5080-4600
elan-sh@elanic.com.cn

http://www.emc.com.tw/
mailto:elan-sz@elanic.com.cn
mailto:elan-sh@elanic.com.cn

Contents

EM78 Series IDE User’s Guide • iii

Contents

1 Introduction 1
1.1 Overview..1

1.2 Introduction to eUIDE Program...1

1.2.1 eUIDE Main User Interface ..2
1.2.2 eUIDE Sub-Windows ...3

1.2.2.1 Project Window ...3
1.2.2.2 Editor Window...5
1.2.2.3 Special Register Window ..10
1.2.2.4 Call Stack Window ..12
1.2.2.5 RAM Bank (General Registers) Window..14
1.2.2.6 Watch Window ..15
1.2.2.7 Data RAM Window...20
1.2.2.8 LCD RAM Window ..20
1.2.2.9 EEPROM Window ...24
1.2.2.10 Output Window ..25

1.2.3 eUIDE Menu Bar ..27
1.2.4 ToolBar ...27

1.2.4.1 Toolbar Icons and its Functions and Hotkeys................................27
1.2.4.2 Document Bar..29
1.2.4.3 Status Bar...30

2 The eUIDE Commands 31
2.1 eUIDE Menu Bar and its Menu Commands ..31

2.1.1 File Menu..31
2.1.2 Edit Menu..32

2.1.2.1 Executing Find Command from Edit Menu33
2.1.2.2 Executing Find Command with Shortcut Hotkeys........................34

2.1.3 View Menu..34
2.1.4 Project Menu...35

2.1.4.1 Executing “Dump code over 64K to sram” Command36

Contents

iv • EM78 Series IDE User’s Guide

2.1.5 Debug Menu..36
2.1.5.1 “Run From” Command Sub-Menu Function Description.............38
2.1.5.2 “Address Breakpoint” Dialog Function Description.....................38

2.1.6 Tool Menu...44
2.1.6.1 Computing Execution Time...44
2.1.6.2 Moving Data from File to SRAM
 (Applicable to EM78815 only)..45

2.1.7 Option Menu ...48
2.1.7.1 Debug Option Setting..48
2.1.7.2 Accelerate Reading Registers..50
2.1.7.3 View Setting ..50
2.1.7.4 Environment Setting..52
2.1.7.5 Customize…..53

2.1.8 Window Menu...55
2.1.9 Help Menu ..56

3 Getting Started 57
3.1 Overview..57

3.1.1 System Requirements..57
3.1.2 Software Installation ...57
3.1.3 ANSI Compatibility ..58

3.2 Hardware Power-up ...58

3.3 Starting the eUIDE Program..58

3.3.1 Connect Dialog ...58
3.3.1.1 Reconnection ...59

3.3.2 Code Option Dialog ..60
3.3.3 Accelerate Reading Registers Dialog ...60

3.4 Create a New Project ...60

3.4.1 Using the Project Wizard (Project Project Wizard)60
3.4.2 Using the New Command (File/Project New…)64

3.5 Add and Remove Source Files from/to Project ...66

3.5.1 Create and Add a New Source File for the Project66
3.5.2 Add Existing Source Files to the New Project..67
3.5.3 Deleting Source Files from Project...68

Contents

EM78 Series IDE User’s Guide • v

3.6 Editing Source Files from Folder/Project ..68

3.6.1 Open Source File from Folder for Editing..68
3.6.2 Open Source File from Project for Editing ...69

3.7 Compile the Project..69

3.8 Dumping the Compiled Program to ICE ...71

3.9 Debugging a Project...71

3.9.1 Breakpoints Setting...73

4 Assembler and Linker 75
4.1 Assembler and Linker Process Flow..75

4.2 Statement Syntax ...76

4.2.1 How to Define Label..76
4.3 Number Type..78

4.4 Assembler Arithmetic Operation ...78

4.5 Program Directives ..79

4.6 Conditional Assembly..86

4.7 Reserved Word...88

4.7.1 Directives, Operators ...88
4.7.2 Instructions Mnemonics...88

4.8 Pseudo Instruction..89

5 C Fundamental Elements 91
5.1 Comments ..91

5.2 Reserved Words ...92

5.3 Preprocessor Directives ...92

5.3.1 #include...92
5.3.2 #define...94
5.3.3 #if, #else, #elif, #endif ..94
5.3.4 #ifdef, #ifndef ...95

5.4 Literal Constants ..95

5.4.1 Numeric Constant ...95
5.4.2 Character Constant..96
5.4.3 String Constant..96

Contents

vi • EM78 Series IDE User’s Guide

5.5 Data Type ...97

5.6 Enumeration...98

5.7 Structure and Union ...98

5.8 Array ..99

5.9 Pointer ..100

5.10 Operators ..100

5.10.1 Types of Supported Operators ...100
5.10.2 Prefix of Operators...102

5.11 If-else Statement ...102

5.12 Switch Statement ..103

5.13 While Statement ...103

5.14 Do-while Statement ..104

5.15 For Statement..104

5.16 Break and Continue Statements..105

5.17 Goto Statement ...105

5.18 Function..106

5.18.1 Function Prototype...106
5.18.2 Function Definition..106

6 C Control Hardware Related
 Programming 107

6.1 Register Page (rpage)...107

6.2 I/O Control Page (iopage)..109

6.3 Ram Bank... 110

6.4 Bit Data Type ... 111

6.5 Data/LCD RAM Indirect Addressing .. 112

6.6 Allocating C Function to Program ROM... 113

6.7 Putting Data in ROM ... 114

6.8 Inline Assembler .. 115

6.8.1 Reserved Word.. 115
6.8.2 Use of C Variable in the Inline Assembly ... 116

6.9 Using Macro... 117

Contents

EM78 Series IDE User’s Guide • vii

6.10 Interrupt Routine .. 118

6.10.1 Interrupt Save Procedure.. 118
6.10.2 Interrupt Service Routine... 118
6.10.3 Reserved Common Registers Operation.. 119

7 Quick Workout on Tiny C Compiler 123
7.1 Introduction..123

7.2 Create a New Project ...123

7.3 Add a New “C” File to the Project...124

7.4 Add a Second File or a New Header File to the Project ..125

7.5 The Main(), Interrupt Save, and Service Routine Functions126

7.6 Project Development with Interrupt...127

7.7 Tips on C Compiler Debugging ...129

7.7.1 Speed up Debugging ...129
7.7.2 View Corresponding Assembly Code in C Environment129
7.7.3 Viewing Defined Variables in Register Window ..130
7.7.4 Reducing Codes Size in Some Cases..131

APPENDIX

A Assembly Error/ Warning Messages 133
A.1 Introduction..133

A.2 Class M: Main Program Errors Messages ...133

A.3 Class A: Assembler Errors/Warnings Messages ..135

A.4 Class L: Linker Error Messages...140

A.5 Class D: Debugger Error Messages ...141

B C Conversion Table 145
B-1 Conversion between C and Assembly Codes...145

Contents

viii • EM78 Series IDE User’s Guide

C Frequently Asked Questions (FAQ) 155
C.1 FAQ on Assembly ..155

C.2 FAQ on Tiny C Compiler..156

C.4 Contacting ELAN FAE ..159

D UICE Hardware Description 161
D.1 UICE (USB) and its Major Components/Functions ..161

D.2 Special Note on eUIDE Software and UIT660N...162

E Library Application Notes 163
E.1 C Library..163

E.2 Assembly Library...163

F C Standard Library 165
F.1 Character Class Tests: “ctype.h”...165

F.2 String Functions: “string.h”..165

F.3 Mathematical Functions: “math.h”...166

F.4 Utility Functions: “stdlib.h” ...166

F.5 Others..167

F.5.1 Variable Argument Lists: “stdarg.h” ..167
F.5.2 Limits: “limits.h” and “float.h”..167

F.6 Manual of Functions...168
F.6.1 Character Classification Routines – isalnum, isalpha, iscntrl, isdigit,
 isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit168
F.6.2 Convert Letter to Upper or Lower Case – tolower, toupper170
F.6.3 Copy a String – strcpy, strncpy ...170
F.6.4 Link Two Strings – strcat, strncat ...171
F.6.5 Compare Two Strings – strcmp, strncmp..171
F.6.6 Locate Character in String – strchr, strrchr...172
F.6.7 Search a String of a Specified Set of Characters – strspn, strcspn172
F.6.8 Search a String of Any Set of Characters – strpbrk173
F.6.9 Locate a Substring – strstr...173
F.6.10 Calculate the Length of a String – strlen ...174

Contents

EM78 Series IDE User’s Guide • ix

F.6.11 Extract Tokens from Strings – strtok ...174
F.6.12 Copy Memory Area – memcpy..175
F.6.13 Copy Memory Area – memmove...175
F.6.14 Compare Memory Areas – memcmp ...176
F.6.15 Scan Memory for a Specified Character – memchr...................................176
F.6.16 Fill Memory with a Constant Byte – memset ..177
F.6.17 Sine Function – sin...177
F.6.18 Cosine Function – cos..177
F.6.19 Tangent Function – tan...178
F.6.20 Arcsine Function – asin ...178
F.6.21 Arccosine Function – acos ...179
F.6.22 Arctangent Function – atan..179
F.6.23 Arctangent Function of Two Variables – atan2..180
F.6.24 Hyperbolic Sine Function – sinh..180
F.6.25 Hyperbolic Cosine Function – cosh...180
F.6.26 Hyperbolic Tangent Function – tanh..181
F.6.27 Exponential, Logarithmic, and Power Functions – exp, log, log10, pow..181
F.6.28 Square Root Function – sqrt ..182
F.6.29 Ceiling Function: Smallest Integral Value
 Not Less Than Argument – ceil ...182
F.6.30 Largest Integral Value Not Greater than Argument – floor........................183
F.6.31 Absolute Value of Floating-Point Number – fabs......................................183
F.6.32 Multiply Floating-Point Number by Integral Power of 2 – ldexp184
F.6.33 Convert Floating-Point Number to Fractional and
 Integral Components – frexp ...184
F.6.34 Extract Signed Integral and Fractional Values
 from Floating-Point Number – modf ...185
F.6.35 Convert a String to a Float – atof...185
F.6.36 Convert a String to an Integer – atoi, atol ..186
F.6.37 Random Number Generator – rand, srand ...186
F.6.38 Compute the Absolute Value of an Integer – abs, labs187

F.7 Application Notes ...187

Contents

x • EM78 Series IDE User’s Guide

User’s Manual Revision History
Doc. Version Revision Description Date

0.1 User’s Guide Initial Preliminary Version 2009/07/08
1.0 User’s Guide Initial Official Version 2009/11/11
1.1 Modified & added new info to Section 3.4, “Create a New Project”

Added Appendix F, “C Standard Library” 2010/05/06

Chapter 1

EM78 Series IDE User’s Guide Introduction • 1

Chapter 1
Introduction
1.1 Overview

The EM78 Series Integrated Development Environment is a project oriented
development tool for ELAN’s EM78 Series microcontrollers. It comprises of
the UICE development in-circuit emulator and the eUIDE software tool.

1.2 Introduction to eUIDE Program
The eUIDE is a Windows 2000 or Windows XP based program for UICE
development in-circuit emulator that is used in the development of EM78 Series
8-bit microcontrollers of ELAN. The aims of the eUIDE are to provide a
friendly operation environment, powerful functions, a high-speed transmission,
and a stable system during development of the microcontrollers.

The eUIDE offers a lot of friendly functions including block comment,
auto-updated registers, and real time line disassembler. It is made up of four
main modules, namely; the Editor, Project Manager, Assembler, and Debugger,
with each module having their respective submenus.

 Editor: provides editing functions for creating, viewing, and modifying the
source files. It supports Find, Replace, Undo/Redo, and Cut/Copy/Paste.

 Project Manager: provides functions for inserting files into a projects
deleting files from a projects and compiling of the project.

 Assembler: support such functions as Include, Macro, Assembly
Arithmetic, Conditional Assembly, List Files, and Map File

 Source Level Debugger: provides source-level debugging function on the
target which is embedded on the UICE. You can explore and analyze the
status register, and the memory contents of the EM78 series target with the
eUIDE. With its powerful features, like multiple breakpoints, real-time
modification of register contents, and disassembly, the UICE becomes an
indispensable partner of eUIDE in offering a perfect development
environment for EM78 Series microcontrollers

Chapter 1

1.2.1 eUIDE Main User Interface
The eUIDE is a project oriented integrated development environment (IDE)
system that is used to edit user application programs and generates
emulation/layout files for ELAN's EM78 series (8-bit) microcontrollers.

Project Window Editor Window Special Registers Window

LCD RAM Window Watch Window

Figure 1-1 eUIDE Main Window Layout

NOTE
Actual number of sub-windows may vary in accordance with the actual target IC in use.

Output Window

Status Bar

Data RAM
Window

RAM Bank
Window

Call Stack
Window

Document Bar

Document Bar

Menu Bar
Toobar

2 • Introduction EM78 Series IDE User’s Guide

Chapter 1

1.2.2 eUIDE Sub-Windows
The sub-window may be displayed or hidden by clicking on the pertinent
window commands from the View menu (see Section 2.1.3)

1.2.2.1 Project Window
The Project Window consisted of two view modes, namely; File View mode
and Label/Function View mode.

 File View Mode

The Title Bar of the Project window shows your current microcontroller and
project filename.

Figure 1-2a Project Window in
File View

The Project window holds the Source,
Header, List, and Map files.

Where:
Source Files (*.dt) –
are the assembly source files that are added
into the current project. In C mode, source
file will be *.c file.

Header Files (*.h) –
are the reference files required by source
program.

List Files (*.lst) – are the list files.
Map File (*.map) – are the map file.
Library File (*.bbj) – are the reference files required by source program.

Project Filename (*.apj),
 or *.cpj in C mode

Target
Microcontroller

After you have opened or created a project, click on the selected folder to
expand and browse its contents. Then right-click on the selected file to display
its shortcut pop-up menu.

EM78 Series IDE User’s Guide Introduction • 3

Right-click on the selected
file to display its shortcut
pop-up menu

Click on the selected
folder to expand and

browse its contents

Figure 1-2b Accessing the Supporting Files from Project Window

Chapter 1

The following explains the functions of the 3 commands in the pop-up menu.

Open – Opens the selected file. For example, right clicking on 447test.dt,
the file then opens. If the file is already opened, no action is
performed.

Properties – Displays the complete path of the selected file or as illustrated in
the following figure which shows where the 447test.dt file is
located.

Figure 1-2c An Example of a Complete Path of the “447test.dt” File

Delete – Removes the selected file from the current Project Source Files
folder. If the file is still opened, the program closes the file before
removing it. For example, if you select to remove the 447test.dt
file, a confirmation dialog will display. Click the Yes to remove
the file from the project. Otherwise click No.

Figure 1-2d Removing a File from Project Source Files Dialog

 Label/Function View Mode

To access the Label/Function View window, click the Label/Function View
tab at the bottom of the Project window

Figure 1-2e Project Window in
 Label/Function View

After performing a code dump, eUIDE
will automatically determines the
functions from “C” code (see figure at
left) and labels from ASM code. The
result is then displayed in the
Label/Function View mode of the
Project window categorized by files.

4 • Introduction EM78 Series IDE User’s Guide

Chapter 1

Figure 1-2f Searched Label

/Function Location
Pinpointed in the in
Editor Window

To find the location of the displayed label or
function in the file, double-click on a label or
function. The eUIDE will automatically
pinpoint to the pertinent location in the Editor
window (as illustrated at left). At the same time,
eUIDE will display the search results in the
Output window as illustrated in Figure 1-2g
below.

Figure 1-2g Simultaneous Search Results Display in the Output Window

If after editing the code eUIDE is unable to locate the label/function location in
the Editor window, the Output window will display a message providing a
reason for not finding the searched item.

1.2.2.2 Editor Window

Figure 1-3a Editor Window

The Editor window is a multi-
windowed editing tool for creating,
viewing, and debugging source files.

Its major editing features are:
 Unlimited file size
 Multiple files can be opened and displayed at the same time

 Insert (overstrike) mode for editing
 Undo/Redo
 Clipboard support (text can be cut, copied, moved, and pasted onto the

clipboard using a keystroke)
 Drag and drop text manipulation (highlighted text can be dragged and

dropped between any of the IDE windows)

EM78 Series IDE User’s Guide Introduction • 5

Chapter 1

 Interacting with Editor Window

The figure below shows a typical Editor window displaying contents of an
opened source file (447test.dt). Assembly keywords are shown in blue,
comments & comments symbol are in green, values are in brown, and the rest
are shown in black.

Figure 1-3b Editor Window Displaying Contents of an Opened Source File “447test.Dt”

Right-click anywhere within the Editor window
to display an Edit shortcut menu (shown at right)
exclusive for Editor window application.

Note that most of the shortcut menu commands
are also available from the Edit menu of Menu
Bar.

Each command in the shortcut menu functions as
follows:

Cut – Removes the selected text from current
location and move (paste) it into another
location.

 First, select the desired text range you
want to move and then right-click within
the selected text. With the shortcut menu
on display, click Cut command from the
menu. The selected text are then
removed from the Editor window (as
demonstrated in the following figures)
and temporarily stored in the clipboard.
Proceed to paste the text into your target
location.

Figure 1-3c Edit Shortcut Menu
 for Editor Window

6 • Introduction EM78 Series IDE User’s Guide

Chapter 1

Figure 1-3d An Example of a Cut Command Operation

Copy – First, select the desired
text range you want to
copy and then right-click
within the selected text.
With the shortcut menu
on display, click Copy
command from the menu.
A copy of the selected
text is then temporarily
stored in the clipboard.
Proceed to paste the text
into your target location.

Figure 1-3e An Example of a Cut Command
 Operation

Paste – Insert the selected text
(that has been recently cut
or copied into clipboard)
into the target location.
The figure at right shows
an example of a paste
result (framed) at the
bottom of the same page
in the Editor window.

Figure 1-3f An Example of a Paste Command
 Operation

EM78 Series IDE User’s Guide Introduction • 7

Chapter 1

BookMarks – Insert markers to specific lines that you may wish to return to at
later time.

1) Select a line, then from
shortcut menu click
BookMarks Toggle
from the Menu bar (or
directly press the shortcut
keys CTRL + F2).

2) Then go to the bookmarked
lines. For example, if you
have previously book-
marked Lines 1, 5, and 8

Figure 1-3g An Example of a BookMarks Command
 Execution

 (as shown in the sample figure below) and want to return to the lines, access
Toggle command again. The Previous, Next, and Clear All commands
become active this time.

Click Previous to go upward to the
bookmarked line previous to the current
position (or directly press the shortcut
keys SHIFT + F2).
Click Next to go downward to the
bookmarked line next to the current
position (or directly press the shortcut
keys CTRL + SHIFT + F2).
Click Clear All to remove all existing
bookmarks.

Figure 1-3h An Example of Lines Book-
 marked at Lines 1, 5, & 8

Index BookMarks – Embed bookmarks with index numbers. With indexed
bookmarks, you can directly access to the bookmarked
line you wish to return to.

To embed index number into e
bookmarks, place cursor on the
selected bookmarked line, then click
Index BookMarks Toggle
BookMarks x (where “x” is the 0 ~
9).

xisting

You can also directly press the
shortcut keys CTRL + x (where “x” =
to be assigned index number 0 ~ 9).

Figure 1-3i An Example of Lines Book-
 marked at Lines 1, 5, & 8

8 • Introduction EM78 Series IDE User’s Guide

Chapter 1

The figure at right shows bookmarked
Lines 5 & 7 are embedded with Index
1 & 7 respectively.

Figure 1-3j An Example of “Indexed Book-
 Markes” at Lines 1, & 7

Go To Index BookMarks - Go to a particular index bookmarked line.

From shortcut menu, click Go To
Index BookMarks. Then from the
resulting submenu, click on the
indexed bookmark number you want
access.

You can also directly press the
shortcut keys ALT + x (where “x” =
the target bookmark index Number 0 ~
9).

Figure 1-3k An Example of Accessing
 Indexed Bookmark Line 5

Go to Label of … – Find the location of the displayed label or function in the
file. eUIDE will automatically pinpoint at the pertinent
location in the Editor window (see Figure 1-2f, Section
1.2.2.1). At the same time, eUIDE displays the search
results in the Output window as illustrated in Figure
1-2g.

EM78 Series IDE User’s Guide Introduction • 9

Chapter 1

Add to Watch – Watch the data change at the register locations in the
Watch window during debugging.

After dumping project to ICE,
right-click on a temporary register
name (followed by “= =” symbol and
register page or ram bank or control
register page) as indicated in the
example figure at right. From the
resulting pop-up menu, click Add to
Watch. Then observe Register R11
being added into the Watch window.
Real-time changes of the data during
debugging can be observed from this
window.

When right-clicking on a temporary
register name with double–equal
characters (= =), but without register

Figure 1-3l An Example of Adding Register
 R11 into the Watch Window

page/ram bank/control register page, the Watch Dialog will display
instead. See Section 1.2.2.6, Watch Window for further details.

1.2.2.3 Special Register Window

Figure 1-4a An Example of Special Register

The Special Register window shows
the updated contents of the registers
and also that of the I/O control
register depending on the MCU type
in use.
When the Special Register window
is closed, it ceases to interact or read
the hardware contents, except for
some very special registers which is
read internally.

When value
changes, it is
shown in red

 Window Displaying Updated Registers

 Changing Special Register Value Directly by Editing

Figure 1-4b Double-Click on Selected Value
 (BD in this Example)

To change a special register value,
double-click on the selected value (BD
in the example shown at left).

10 • Introduction EM78 Series IDE User’s Guide

Chapter 1

 Figure 1-4c Key-in New Value (77 in this
 Example) to Replace the
 Selected Value

With the existing value highlighted,
key-in the new value (77 in the
example at left figure). Observe the
new value changes to red when you
click anywhere within the Special
Register window.

New value turns red after
clicking anywhere in the

Special Register
window

 Switching Special Register Value into Binary/Hex Value

 Figure 1-4d Right-Click on the Selected
 Value to Display the Binary
 /Hex/Edit Commands

 Figure 1-4e Click Hex Command to
 Switch Binary Register Value
 into “Hex” and Vise-Versa

Right-click on the selected value, a
pop-up menu containing commands for
editing the selected register value will
display.

The following describes each of the
menu commands:

Binary – Switches the register value
from hex to binary format. If
the value is already in binary,
this command is prefixed
with a check mark ().

Hex – Switches the register value
from binary to hex format. If
the value is already in hex,
this command is prefixed
with a check mark ().

Check mark denotes
selected value is

already in hex

Edit – This command auto-selects the clicked value and allows you to change
the value by editing. This is the same as double-clicking on the value as
explained above. However, using this Edit command function is
preferable.

EM78 Series IDE User’s Guide Introduction • 11

Chapter 1

1.2.2.4 Call Stack Window

Figure 1-5a Call Stack Window

The Call Stack window shows the updated
contents of call stack which indicate the actual
hardware content.
When the Call Stack window is closed, it ceases
to interact or read the hardware contents.

 Reading Stack Level

In general, a stack does not have an initial value.
When you press F6, eUIDE resets all stack cells
to 0x0000. Due to ICE hardware design
constraint, if a stack is full during program
execution (as shown in the figure below) and
returns to the calling sub-routine. Reading the
stack level again will display the result as shown
in Figure 1-5c. This may also affect
higher-level sub-routines (as shown in Figure
1-5d).

 Call Stack

Figure 1-5b All Stack Levels are Full (as Indicated by the Breakpoint Setting)

Figure 1-5c Stack Level Returns to the Preceding Stack
 Level (See New Breakpoint Setting)

Figure 1-5d Stack Level Returns to an Earlier and
 Several Levels of Stack

12 • Introduction EM78 Series IDE User’s Guide

Chapter 1

Note that the last (next) stack level still shows 0x0003 (the value of the last
stack level when all stack were full)

Note that all the subsequent stack levels still display 0x0003

 Step-by-Step Execution to Change Stack Values

When you perform a step-by-
step execution (F7), eUIDE will
compare the last stack value
with the stack value after the
“ret” action to identify the
current level position of the
stack. It then changes the value
of the last stack level value from
0x0003 to 0x0000 as indicated
in the figure at right.

To set the values of the higher
stacks level to 0x0000, continue
to perform Step-by-Step

Figure 1-5e Using Step-by-Step (F7) Execution to
 Change the Last Stack Level Value

execution. This will not affect the normal stack operation as indicated in the
figure below.

Figure 1-5f Executing Step-by-Step to Change the Values of the Higher-Level Stacks

Currently, eUIDE remains unable to determine the correct stack level position
at which the ICE stops. This is due to the ICE hardware limitation which unable
the eUIDE Call Stack window to properly display the correct stack level
position. However, this does not affect whatsoever, the actual normal stack
operation.

EM78 Series IDE User’s Guide Introduction • 13

Chapter 1

NOTE
After completing the Go or FreeRun command execution, if all stack level values in Call
Stack window display the same value, this could be caused by either the program has
entered the first level of the call function, or the program has not entered any function at
all. Under this condition, it is not recommended to use the StepOut command.
Otherwise, the program will jump to the first level address in the Call Stack window.

1.2.2.5 RAM Bank (General Registers) Window

Figure 1-6a Ram Bank (General Registers) Window

The Ram Bank (General Registers) window shows the updated contents of
the common RAM bank registers. When the RAM Bank window is closed, it
ceases to interact or read the hardware contents.

 Changing General Register Value Directly by Editing

Figure 1-6b Double-Click on Selected Value
 (EF in this Example)

To change a special register value,
double-click on the selected value (EF
in the example shown at left).

 Figure 1-6c Key-in New Value (33 in this
 Example) to Replace the
 Selected Value

With the existing value highlighted,
key-in the new value (33 in the
example at left figure). Observe the
new value changes to red when you
click anywhere within the eUIDE
window.

New value turns red
after clicking anywhere

in the eUIDE window

14 • Introduction EM78 Series IDE User’s Guide

Chapter 1

 Switching General Register Value into Binary/Hex Value

 Figure 1-6d Right-Click on the Selected Value
 to Display the Binary/Hex/Edit
 Commands

 Figure 1-6e Click Hex Command to Switch
 Binary Register Value into “Hex”
 and Vise-Versa

Right-click on the selected value,
a pop-up menu containing
commands for editing the selected
register value will display.

The following describes each of
the menu commands:

Binary – Switches the register
value from hex to
binary format. If the
value is already in
binary, this command is
prefixed with a check
mark ().

Hex – Switches the register
value from binary to
hex format. If the value

Check mark denotes
selected value is

already in hex

is already in hex, this command is prefixed with a check mark ().

Edit – This command auto-selects the clicked value and allows you to change
the value by editing. This is the same as double-clicking on the value as
explained above. However, using this Edit command function is
preferable.

1.2.2.6 Watch Window

Figure 1-7a Watch Window

With Watch window, you can add variables that are declared in assembly file.
The Watch window will show the defined variable information, such as name,
contents, bank, and address. Refer to Section 4.2, Statement Syntax; for more
details on assembly codes.

EM78 Series IDE User’s Guide Introduction • 15

Chapter 1

To view real-time changes of selected register values from the Watch window
during debugging, the register values have to be entered into Watch window.
To do so, do one of the following (three methods are available):

 Right-Clicking the Selected Register Value Directly from Editor Window

1) Right-click a register value (or
variable) from the Editor
window. From the resulting
pop-up menu, click Add To
Watch command.

If the selected value contains
register page (or ram bank or
control register page as shown
in the right figure), the register
value is directly displayed in the
Watch window (see Section
1.2.2.2, Editor Window “Add
to Watch”).

If the selected value does not
contain register page/ram
bank/control register page (as
shown in the figure below), the
Watch Dialog (see Figure 1-7d
below) will display instead.

Figure 1-7b Select & Right-Click Register
 Value “ee” (with Register
 Page Register Page) from
 Editor Window, Pop-Up Menu
 then Displays

Figure 1-7c Select & Right-Click Register
 Value “ee” (without Register
 Page), “Watch Dialog” Displays

2) From the Label Name box of
Watch Dialog window, select
and double-click a variable label
name you wish to assign. Then
from the Label Types options,
select the variable type to be
displayed, i.e., Special Register,
Control Register, RAM(Bank),
or Call ID RAM (see figure at
right).

Figure 1-7d eUIDE Watch Dialog

16 • Introduction EM78 Series IDE User’s Guide

Chapter 1

3) Click the OK button to add and display the selections into the Watch
window as shown below.

Figure 1-7e Selected Register Value “ee” Displayed in Watch Window

 Accessing “Debug” “Add Label to Watch” Command from Menu Bar

1) Select a register from the
Editor window and from
Menu Bar, click Debug
Add Label to Watch.

2) From the resulting Watch
Dialog, select and
double-click a label name
(see Figure 1-7d above).
Then from the Label Types
options, select the variable
type to be displayed, i.e.,
Special Register, Control
Register, RAM(Bank), or
Call ID RAM.

Figure 1-7f Debug Pull-Down Menu from
 eUIDE Menu Bar

3) Click the OK button to add and display the selections into the Watch
window as shown in Figure 1-7e above.

NOTE
The variables displayed in the Label Name: list box of the Watch Dialog are the same
variables (without register page/ram bank/control register page) that you have
defined in the program code using the double–equal characters “==”. Double-clicking a
variable name will add or clear the asterisk “*”. An asterisk prefixed to variable name
indicates that the variable is selected. Click OK button to add the selected variable to
the Watch window.

EM78 Series IDE User’s Guide Introduction • 17

Chapter 1

 Accessing “Option” “View” Command from Menu Bar
(Mass Selection by Labeling)

1) From Menu Bar, click Option
 View Setting (see figure at

right). From the resulting
View Setting dialog, select
the Add defined label to
watch automatically option
(see Figure 1-7i below).
There are three sorting options
in eUIDE Version 2.6 or later.
Labels added into Watch
window will be sorted
automatically according to the
selected sorting option
(sample figure shows “sort by
name” option selected). Then
Click OK button.

2) All variables with page
location data are automati-
cally formatted into labeled
format in the Editor window
as shown in the example
below.

Figure 1-7i Labeled Format of Variables
 with Page Location Data

Figure 1-7g Option Pull-Down Menu from
 eUIDE Menu Bar

Figure 1-7h eUIDE View Setting Dialog

Variable without
page location data,

not labeled

18 • Introduction EM78 Series IDE User’s Guide

Chapter 1

3) After code dump, the variables are automatically included in the Watch
window as illustrated in the sample below.

Figure 1-7j Labeled Register Values Display in Watch Window

NOTES
1. To remove a variable from the Watch window, select the variable and press

DELETE from the keyboard.
2 If the “Add defined label to watch automatically” check box is selected, labels added

into Watch window will be sorted according to the selected sorting option (one of the
3 options).

3. The labeled variables are placed after the end of the existing Watch window
variables that were input manually using the two methods described earlier.

4. When executing “Project” “Dump to ICE (F3)” command in “C” Mode, all global
labels will display from the Information sub-window of Output window (illustrated
below).

 ● First field is the type of variable and page number.
 ● Second field is the register or ROM’s address of the variable.
 ● Third field is the name of the variable.

 1st Field 2nd Field 3rd Field

Figure 1-7k Global Variables Display from Information Sub-Window of Output Window

EM78 Series IDE User’s Guide Introduction • 19

Chapter 1

1.2.2.7 Data RAM Window

Figure 1-8 Data RAM Window with a Right-Clicked Binary Value

The Data RAM window is accessible only if RAM is available from the target
microcontroller currently in use. The Data RAM window shows the contents
of the data RAM. To change the data RAM values is the same as changing the
special register values described in Section 1.2.2.3, Special Register Window.

Note that when the Data RAM window is closed, it ceases to interact or read
the hardware contents.

1.2.2.8 LCD RAM Window

With the EM78 Series IC that supports LCD installed and in used, open the
LCD RAM window. Drag a corner to increase the size of the LCD RAM
window until the window looks as shown in the following figure.

Note that when the LCD RAM window is closed, it ceases to interact or read
the hardware contents.

Data Pane

Graphic Pane

Control Pane

Pane Selection Bar Figure 1-9 LCD RAM Window

The LCD RAM window consisted of four sections as detailed below:

1) Data Pane

This pane displays the contents of the LCD RAM. “Cx” denotes the LCD
signal “COM x.” “Sx” denotes LCD signal “Segment x.”

To modify the contents of the LCD RAM elements, double click on the
selected element (grid block). The color of the selected element will change
from pink (1) to white (0) and vise-versa. Any related messages will be
shown in the Output window.

20 • Introduction EM78 Series IDE User’s Guide

Chapter 1

2) Graphic Pane
This pane displays the status of the loaded BMP graphic. If no BMP graphic
is loaded, no display is shown.

3) Control Pane
This pane controls the link between the BMP graphic and the data, as well as
setting the COM/SEG values for each graphic segment.

4) Pane Selection Bar
You can select whether to display any or all of the three panes described
above.

 Loading Graphic Display and Segment Settings

The following is the step-by-step procedure on how to load the graphic display
and define their segment settings:

1) From the Control Pane click Import Graph button to load
the BMP file. The program will automatically convert the
graphic file into black and white colors and determines
which black pixels are linked together to establish
segments.

2) Click Set Mapping button and the black segments fades to
gray to indicate that the system is now in Mapping Mode.
At the same time, the “Set Mapping” button label changes
to “Done.” Click the Done button only after all mapping
setting processes are completed.

3) Define COM/SEG values in the Control Pane and point at a
segment to apply the value. Observe the segment turns to
blue color. This indicates that the pointed segment is now
active.

4) Click on the active segment to enter the Control Panel

defined COM/SEG values into the segment. The example
shows the defined COM & SEG values are “0.”

5) Move the pointer away from the segment and the segment
turns into green. This indicates that the system has already
saved the COM/SEG values for the particular segment.

EM78 Series IDE User’s Guide Introduction • 21

Chapter 1

6) Then move the pointer to other segments and repeat the

steps described above to redefine and change the
COM/SEG values of the remaining segments.

 An automatic and faster way of re-defining and setting of
COM/SEG values is explained in the next topic.

7) After all segment values are set, click Done (the original
Set Mapping) button. Then run the program to test the
settings, e.g., set some breakpoints and execute “GO” or
use the “Continue step into.” View the results and check
for error.

 More Efficient Way of Re-Defining COM/SEG Values

The Step 6 above shows how to manually define and change the COM/SEG
values for each segment. This method is okay if there are only a few segments
involved. However, if a large number of segments are involved, the task
becomes complicated and time consuming. The following steps explain a more
efficient way of defining a large number of segment values:

1) From the Control Pane, define the SEG
Range as 0~1, and the COM Range as
0~3. Consequently, the segment values
will be set according to these defined
ranges.

2) Define COM/SEG values to “0” and Auto
Increase value to “1.”

3) Point to the segment where the
COM/SEG value (0/0) is to be applied.
Click and you should see the segment set
as “0/0.”

4) Observe that as soon as the “0/0” value is

entered on the segment, the Control Pane
SEG value is set to Auto-Increase by “1.”
Note that only the value located at the
right box (SEG value in this case) will
change.

5) Thus, there is no need to manually change
the COM/SEG value when setting “0/1”
value for the next segment. Just directly
click on the segment and the next SEG
value is Auto-Increased by “1.”

Only the value located
in this box will change

22 • Introduction EM78 Series IDE User’s Guide

Chapter 1

6) Due to the fact that the SEG Range is set

at 0~1 (see Item 1 above), the next or 3rd
segment you click cannot increase its
SEG value to “2.” Hence, the system
automatically allocates the auto-increase
value of “1” to COM and sets the SEG
value back to “0.”

7) Consequently, all you need to do is to
continuously click on the remaining
segments to set their COM/SEG values
within the defined range.

 Other Convenient Functions of the LCD RAM Window

In addition to the above, other convenient functions of the LCD RAM window
are also available and are describe below together with its respective notes:

1) If you wish to automatically apply the
Auto Increase value to COM (instead of
SEG), click Swap button and observe
SEG & COM swaps positions.

Only the value located
in this box will change

2) After clicking Swap, also observe that the system
has at the same time, switched the positions of all
values (from COM/SEG to SEG/COM) on the
previously set segments. Compare the figure at
right to the one in Item 7 above and see the
difference.

3) After setting all the relative values to affected
segments, it is recommended you click Save File
button to save the setting into LCD Simulator
Data File (*.LCD). Otherwise, when you want to
use the program the next time, you will need to
define and set the values again.

4) Since the LCD Simulator Data File already
includes the imported graphic files, you do not
have to click the Import Graphics button the
next time you want to use the saved *.LCD file.
Just click Load File button to load the data file.

EM78 Series IDE User’s Guide Introduction • 23

Chapter 1

5) The program determines which black pixels

are linked together to establish a segment.
However, when 2 or more separate segments
constitute a non-separable object or character
(e.g., i, j), all integral segments should be
assigned with the same COM/SEG value.
Otherwise, the program will assume that
there are 2 or more separate segments.

6) As stated above, the program determines
which black pixels are linked together to
establish a segment. However, when 2 or
more segments which are ought to be
separated and set with different COM/SEG
values, are somehow joint together at one
point, such graphic file should be modified to
break up their link. Otherwise, the program
will incorrectly assume that there is only one
single segment.

1.2.2.9 EEPROM Window

Click row header to
disable and exclude row

data from updating &
reading. Click again to

restore

Click Refresh button to
restore updating &

reading of all EEPROM
data

Figure 1-10 EEPROM Window Showing Rows 30 & 40 Disabled

The EEPROM window is accessible only if EEPROM is available from the
target microcontroller currently in use. The EEPROM window shows the
contents of the data EEPROM.

Note that when the EEPROM window is closed, it ceases to interact or read the
hardware contents.

24 • Introduction EM78 Series IDE User’s Guide

Chapter 1

Reading all EEPROM data is time consuming. It needs almost 8 seconds to
read 256 bytes. To minimize reading time, you can disable the EEPROM data
that you do not need to read by clicking the row header of each row that you do
not wish to read. The disabled rows will have their data dimmed and are
excluded from updating process. To restore updating to the disabled rows, click
the row header. If you want to update all EEPROM data, just click Refresh
button on top-left of the window. All data are then updated.

1.2.2.10 Output Window

Figure 1-11a Output Window

The Output window displays messages indicating the results (including errors)
of the project compiling just performed, such as assembler, linker, trace log
history, and debugging. The window consists of four tab sub-windows, namely;
Build, Information, Find in Files, Message, and Program Rom, where:

Build – displays assembler/linker related messages and trace logs.
Double click on the error message to link to the
corresponding program text line where the source of error
occurs. The pertinent source file is automatically opened in
the Editor window if it is not currently active.

Information – displays debugging related ROM and RAM Bank memory
usage information.

Find in Files – allows you to find identical string (selected from an active
file) from other active or inactive files in your folder. Lines
containing the identical string will display on the Output
window complete with its source filename and directory.
See example below.

Message – displays the debugging related changes to the LCD RAM
window.

Program Rom – displays the contents of program ROM after dump.

EM78 Series IDE User’s Guide Introduction • 25

Chapter 1

 Executing Find Command from Output Window

26 • Introduction EM78 Series IDE User’s Guide

Right-click to display pop-up menu
from a sub-window, and click “Find”

Figure 1-11b Finding a String from any of the Output Sub-Windows

The steps for initiating the Find dialog from Output window:

1. From one of the Output sub-windows, right-click within the widow. A
command popup menu then displays.

2. From the pop-up menu, click Find command.

3. The following Find dialog then displays.

 Figure 1-11c Find Dialog from Output Window

Where:

Find: Enter the word string you want to search

Find Next: Click this button to search the next matching string
(Hotkey: Alt + N)

Cancel: Quit search and exit from the dialog

Direction Up: Search forward (Hotkey: Alt + U)

Direction Down: Search backward (Hotkey: Alt + D)

Match whole word only: Enable check box to find and match whole word
only. (Hotkey: Alt + W)

Match case: Select this option to match the string in lowercase or
uppercase characters exactly as they appear.
(Hotkey: Alt + C)

Chapter 1

Move with code line: When this check box is enabled, the Output window
will indicate the search matched line in the trace log. At
the same time, the corresponding trace log mark code
line in the Editor window is highlighted
(Hotkey: Alt + M)

NOTE
The above hotkeys works only when the Find dialog is active.
When Find dialog is inactive, and the eUIDE is active, use Ctrl + R to find forward
and Ctrl + Q to find backward.

1.2.3 eUIDE Menu Bar
See Chapter 2 for details.

1.2.4 ToolBar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 1-12a eUIDE Main Window (Standard) Toolbar

 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Figure 1-12b eUIDE Main Window (Build) Toolbar

1.2.4.1 Toolbar Icons and its Functions and Hotkeys
Corresponding hot key is enclosed in parenthesis:

1
Open: open an existing file (Ctrl + O)

2

Save: save current active document (Ctrl + S)

3

Save All: save all document

4

Cut: remove the selected string to clipboard (Shift + Del)

5

Copy: copy the selected string to clipboard (Ctrl + C)

6

Paste: paste the string from clipboard (Ctrl + V)

7

Undo: cancel the last editing action (Alt + Backspace)

8

Redo: cancel the last “undo” i.e., restore the “undone” editing
 action ((Ctrl + Y))

EM78 Series IDE User’s Guide Introduction • 27

Chapter 1

9

Open/Hide Workspace: display/hide toggle for Project window

10

Open/Hide Output: display/hide toggle for Output window

11 Only Source Window: maximize editor window (Ctrl +Shift +S)

12

Find: find string from within the entire active file (Ctrl + F)

13

Find Next: find string from cursor position toward the end of file
 (Ctrl + N)

14

Find Previous: find string from cursor position toward the
 beginning of file (Ctrl + P)

15

Find in Files: find string from inactive files

16

Toggle Bookmark: apply/remove bookmark on the line where
 cursor is positioned (Ctrl + F2)

17
Go to Next Bookmark: jump to the next bookmark from cursor

 position toward the end of file

18
Go to Previous Bookmark: jump to the next bookmark from

 cursor position toward the beginning of file
 (Ctrl + F2)

19

Clear All Bookmarks: clear all bookmarks (Ctrl + Shift + F2)

20

Print: print the active file

21
 About: about eUIDE version and other information

22

Assemble (or Compile in C mode): assemble (or Compile) the
 active file in the Editor window (Alt + F7)

23
Build: assemble (or compile in C mode)the modified files in the

project and link object files (Shift+ Alt + F9)

24
Rebuild All: assemble (or compile in C mode) all files in the
 project and link object files (Alt + F9)

25

Go: auto dump and execute program with the effect of the
 breakpoints (F5)

26

Free Run: auto dump and execute program with the breakpoints
 ignored (F10)

27
 Reset: reset the ICE (F6)

28

Step Into: auto dump and execute program step by step
 including subroutines (F7)

29

Step Over: auto dump and execute program step by step
 excluding the subroutines (F8)

30
Step Out: auto dump and execute program until exit from

subroutines (Ctrl + F7)

28 • Introduction EM78 Series IDE User’s Guide

Chapter 1

31

Go to Cursor: auto dump and execute program, then stop at the
 cursor position while ignoring the breakpoint (F4)

32
Run from Selected Line: Start running command from the line
 where the cursor is located

33
 Toggle Breakpoint: insert/remove toggle for breakpoints (F9)

34

Clear All Breakpoints: remove all breakpoints

35
Trace Back: Trace the executed trace log backward from the last

executed address to the address before the current
executed address.

36
Trace Forth: Retrace the trace log address forward (top to

bottom) or at reverse direction of Trace Back
command

37 Stop: Stop Free Run or Go without break point.

 Chinese Characters Code Conversion Hotkeys

Applicable to eUIDE source files written and used in Chinese speaking areas.

1) Ctrl + Alt + Shift +G: Convert Traditional Chinese (Big5) to Simplified
Chinese (GB)

2) Ctrl + Alt + Shift +B: Convert Simplified Chinese (GB) to Traditional
Chinese (Big5)

3) Ctrl + Alt + Shift +Z: Undo the last conversion

1.2.4.2 Document Bar

Figure 1-13 eUIDE Main Window Document Bar

The Document bar displays the file icons representing each of the opened files
in the Editor window. Click the icon of the pertinent file that you wish to
activate and place in front of the Editor window to perform editing.
Highlighted filename is the active file (function is similar with taskbar buttons
under Windows).

Double clicking on opened file icon in the Document bar will close the active
document.

EM78 Series IDE User’s Guide Introduction • 29

Chapter 1

30 • Introduction EM78 Series IDE User’s Guide

1.2.4.3 Status Bar

 Running indicator

Cursor position

Text file OS format R/W flag

Keyboard mode

Figure 1-14 eUIDE Main Window Status Bar

A eUIDE running indicator will be shown in the Status bar while your project is
being compiled.

The Cursor position indicates the cursor location within the text Editor
window.

R/W flag indicates the active file Read/Write status. If Read only, “Read” will
display, otherwise the field is empty.

Keyboard mode displays the status of the following keyboard keys:
 Insert key – OVR is dimmed when overtype mode is off, highlighted

when on.
 Caps Lock key – CAP is dimmed when uppercase character mode is off,

highlighted when on.
 Num Lock key – NUM is dimmed when the numeric keypad calculator

mode is off, highlighted when on.
 Scroll Lock key – SCRL is dimmed when cursor control mode is off,

highlighted when on.

Chapter 2

Chapter 2
The eUIDE Commands
2.1 eUIDE Menu Bar and its Menu Commands

Figure 2-1 eUIDE Menu Bar

2.1.1 File Menu
New… Create a new project or source

file (see Section 3.4.1 for details)
Open… Open an existing document or

project
Close Close the active document or

project
Save Save current active document

Save As Save current active document
with new filename

Save All Save all opened documents
Open/Save/Close

 Project
Open/Save/Close the active
project

Print Print active file
Print Preview Preview printed format of active

file
Print Setup… Define printer settings

Recent Files View the record of the recently
opened file(s)

Recent Projects View the record of the recently
opened project

Figure 2-2 File Menu

Exit Exit from eUIDE Program

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 31

Chapter 2

2.1.2 Edit Menu
Undo Cancel the last editing action
Redo Repeat the last editing action

Cut/Copy/Paste Same as standard clipboard
function

Select ALL Select all contents of the active
window

Go to Line… Move cursor to the defined line
number within the active window

Formation
Selection

Formats the selection using smart
indent settings1

Find… Find the defined string in the active
window

Figure 2-3a Edit Menu

Find Next Find the defined string toward the
bottom of the active window

Find Previous Find the defined string toward the top of the active
window

Find in Files Find the defined string in the active and non-active
files

Replace… Same as standard “find and replace” editing functions
Bookmarks Bookmark the line at cursor position

Toggle2 Bookmark the line at cursor position
Previous2 Jump to next bookmark from cursor

position toward the end of file
Next2 Jump to next bookmark from cursor

position toward the beginning of file
Clear All2 Clear all bookmarks

Index Bookmarks Clear all bookmarks or assign an index value (0~9) to
the bookmarks in order to easily access (jump) them
using the “Go to Index Bookmarks” command
below

Go to Index
Bookmarks

Jump to bookmark with “x” index value

Figure 2-3b Bookmarks Sub-Menu

1 Supported in C Project only
2 Submenu from Bookmarks command
32 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

2.1.2.1 Executing Find Command from Edit Menu
1) From menu bar, click Edit Find.

Alternatively, you can press the shortcut keys
CTRL + F.

2) From the resulting dialog, enter the string you
want to find and its parameters.

 Figure 2-4b Find Dialog from Edith Menu

Where:
Find what: Enter the word string you want to

search
Find Next: Click this button to search the next

matching string. Matched string is

Figure 2-4a Find Command
 from Edit Menu

 highlighted
Match whole word only: Select this option to search string that matches the

string as a whole word. For example, if you want to search for
“abc,” the function will NOT pick out string that has
additional characters (including spaces) before or after the
defined string, such as “123abc” or “abced”.

Match case: Select this option to match the string in lowercase or
uppercase characters exactly as they appear.

Direction Up: Search toward the top of the document
Direction Down: Search toward the bottom of the document
Cancel: Quit search and exit from the dialog

The figure at right shows
an example where the
Find command found
and highlights the string
which matches with the
search “mov” string.

Figure 2-4c An Example of Highlighted Matched String

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 33

Chapter 2

2.1.2.2 Executing Find Command with Shortcut Hotkeys
1) From the Find dialog, enter the string you want to search.
2) To search upward, press the shortcut keys CTRL + P.
3) To search downward, press the shortcut keys CTRL + N.

2.1.3 View Menu
Project Show/hide Project window

Special Registers Show/hide Special Register
window

General Registers
(Bank)

Show/hide General Register
(Bank) window

Call Stack Data Show/hide Call Stack window

Data RAM Show/hide Data RAM window
(if supported by the target chip)

LCD Data Show/hide LCD Data window
(if supported by the target chip)

Figure 2-5 View Menu
Output Show/hide Output window
Watch Show/hide Watch window

Assembly Code1 Show/hide Assembly Code in/from Editor window.
After first dump to ICE (F3), enable this checkbox to
display assembly code with C source

Only Source Window Maximize the Editor window

Toolbars Show/hide Standard, Build, or both toolbars

Status Bar Show/hide Status bar

Document Bar Show/hide Document bar

1 Supported in C Project only
34 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

2.1.4 Project Menu
Project Wizard Create a new project with step-by-

step dialog (see Section 3.4.1 for
details)

New… Create a new project with New
dialog (see Section 3.4.2 for
details)

Open Project Open an existing project

Save Project Save the active project together
with all related files

Close Project Close the active Project window

 Figure 2-6 Project Menu
Add Files to

Project…
Add the existing source file into
project

Delete Files from
Project…

Remove source file from project

Assemble
(or Compile under C

Project)

Assemble (or compile) the active file window. If
errors occur during assembly (or compiling) time,
error messages will be shown in the Output window.
Otherwise, “0 errors, 0 warnings, 0 users” will be
displayed.

Build Assemble (or compile) the files that have been modi-
fied, and link them to the currently opened project.

Rebuild All Assemble (or compile) all files regardless of having
been modified or not, and link them to the currently
opened project.

Dump to ICE Dump the program code to ICE
Trace Log Refers to available history only when either Go, Free

Run, or Go To Cursor command from the Debug
menu is executed. The maximum length of trace log
is 8K words.

NOTE
With LPT connection, the trace log will record the
unexecuted instruction next to the last executed one.

With USB connection, the last executed instruction will
be recorded.

Dump code over 64K
to sram1

Dump the page range program code of over 64K to the
SRAM. The SRAM must be plugged into the ICE
hardware when executing this command. See
example in the following figure.

1 This command applies to EM78815 only.
EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 35

Chapter 2

2.1.4.1 Executing “Dump code over 64K to sram” Command

When the Dump code over 64K to sram command is executed, the following
dialog displays. Enter “64” into the Start Page box and “127” into the End
Page box.

Figure 2-7 “Dump code over 64K to sram” Dialog

2.1.5 Debug Menu
Go Run program starting from

the current program counter
until a breakpoint is matched

Free Run Run program starting from
the current program counter
until the OK button of the
Stop Running dialog is
clicked

Reset Perform ICE reset (register
contents are displayed with
initial values)

Step Into Execute the instructions
step-by -step (with register
contents updated
simultaneously)

Figure 2-8 Debug Menu

Step Over Execute instructions as Step
Into (see above), but the
CALL instruction will
execute as “step over”

36 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 37

Step Out Exit CALL subroutines while executing Step

Into in CALL subroutines

Go to Cursor Run program starting from the current program
counter up to the location where the cursor is
anchored (applies to ICE debug mode only)

Continue step into Perform Step into command function
non-stop

Run from Selected Line Start running command from the line where the
cursor is located

Stop Stop Free Run or Go command execution
without matching breakpoint

Add Label to Watch Add or delete variables from the Watch
window. See details in Section 1.2.2.6, Watch
Window.

Reset and Free Run Reset hardware (ICE), and then execute the
Free Run command function

Reset and Go Reset hardware (ICE), and then execute the Go
command function

Run From See Section 2.1.5.2 below for the resulting
sub-menu and its functions

Toggle Breakpoint Set or remove a breakpoint

Show All Breakpoints Show all breakpoints setup data in the Output
window

Clear All Breakpoints Clear all breakpoints

Address Breakpoint Define addresses for the breakpoints. See
Section 2.1.5.3 below for the resulting
sub-menu and its functions

Clear All Address Breakpoints Clear all address breakpoints

Value Breakpoint TCC, R3 value breakpoint for PC Peripheral IC

Trace Back Trace the executed trace log backward from the
last executed address to the address before the
current executed address. The highlighted
address moves backward step- by-step each
time the command is clicked.

Trace Forth Retrace the trace log address forward (top to
bottom) or at reverse direction of Trace Back
command. Applicable only after Trace Back
command is performed.

Chapter 2

2.1.5.1 “Run From” Command Sub-Menu Function Description

Where:

Initial with 8K Step log:
Program is kept running starting from the
initial address until a breakpoint is
matched. Only the last 8K steps of execu-
tion history are stored in the trace buffer.

Current PC with 8K Step log:

Figure 2-9 Run From Command
 Sub-Menu

Program is kept running starting from the current program counter until a
breakpoint is matched. Only the last 8K steps of execution history are stored in
the trace buffer.

Initial with 4K-4K log:
Program is kept running starting from the initial address until a breakpoint is
matched. Only the last 8K steps of execution history (4K steps before and 4K
steps after the matched breakpoint) are stored in the trace buffer.

Current PC with 4K-4K log:
Program is kept running starting from the current program counter until a
breakpoint is matched. Only the last 8K steps of execution history (4K steps
before and 4K steps after the matched breakpoint) are stored in the trace buffer.

2.1.5.2 “Address Breakpoint” Dialog Function Description

The breakpoint set up
method in this dialog is to
use an address breakpoint
that contradicts with the
source level breakpoint;
i.e., the source level
breakpoint will be
ineffective if an address
breakpoint is set at the
same time. Therefore, if
you select the “Address
breakpoint not active”
option, the source level
breakpoint will become
effective.

 Figure 2-10 Address Breakpoint Dialog from
 Address Break Point Command

38 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 39

There are three types of address breakpoints: Group, OR, and Nest, which are
contradictory to each other. However, the setup syntax for OR and Nest is the
same, but different from Group.

Breakpoint Group: 63 groups are available at most and each group has Start
Address, End Address, and Pass Count. When any
instruction is executed between Start Address and End
Address, the Pass Count is deducted by “1.” When the
Pass Count is equal to “0,” the executing program is
stopped at once. Each of the 63 groups is independent
from each other.

Breakpoint OR: 63 groups are available at most and each group is
composed of several addresses and a Pass Count. When
an address is executed within a group, Pass Count is
deducted by “1.” When the Pass Count is equal to “0,” a
breakpoint occurs. Each of the 63 groups is independent
from each other.

Breakpoint Nest: Assign some address location as groups and specify those
groups as a Breakpoint Nest. The outer (the later
specified) group must be satisfied first before the inner
group can take effect.

The Breakpoint Nest and breakpoints of program line are
contradictory. In other words, if Breakpoint Nest is
active, then the program line breakpoints become
inactive, and vise-versa.

● Breakpoint Nest Setup

1) With reference to Figure 2-10 above, enable the
Breakpoint nest checkbox.

2) Input breakpoint address. If the address breakpoint is
for (0x10 0x20 0x30, 0x55) (0x15 0x100 0x170, 0x10),
address location 0x10, 0x20, & 0x30 are assigned to
the same group (Group 1). A breakpoint is attached to
this group, and the associated Pass Count of this
breakpoint is 0x55.

 Address locations 0x15, 0x100, & 0x170 are assigned
to another group (Group 2). A breakpoint is attached
to this group, and the associated Pass Count of this
breakpoint is 0x10.

3) Click OK button.

4) Execute Go (F5) command from Debug menu.

Chapter 2

5) If the Group 2 must be satisfied (Pass Count
decrements to “0”), then the Group 1 will take effect
(decrease its Pass Count on meeting the breakpoint
condition). As soon as all the groups are satisfied, the
execution is stopped at the breakpoint.

 Using “Address Break Point” in Defining a More Complex Breakpoints

The Address Break Point command allows you to directly set a more complex
breakpoints setup which can terminate at an address location.

1) Open the Address Breakpoint dialog (Debug Address Break Point) or
apply shortcut keys ALT + A.

2) The Address Breakpoint dialog displays as shown in the following figure.

Function options

Enter the address
breakpoint in the text box

in accordance with the
format specified below

All the address
breakpoints you have

entered are displayed here

The address breakpoint
format references

Figure 2-11a Address Breakpoint Dialog with Descriptions of
 their Components

3) Select an address breakpoint option (Breakpoint group, Breakpoint or, or
Breakpoint nest) as follows:

● Breakpoint group - Select this option to set a group of breakpoints
within a range of address locations with a counter
number.

a) Select the Breakpoint group option.

40 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

b) Specify a breakpoint group consisting of a
start address, end address, and a breakpoint

 counter in the text box. A breakpoint will be set to all addresses within
the specified start and end address range. The figure example below
shows “(0X01 0X04, 0X01),” which means breakpoints are set to all
addresses between “0X01” and “0x04” and break counter is set at “1,”
thereby allowing a termination break on one passing.

c) Click OK button to save the settings. You
should see the group breakpoints indicated in
the Editor window or as shown in the example
figure at right.

d) Click Go command (Debug Go) to see the
steps and result of the code execution as shown
in the figure at right.

● Breakpoint or - Select this option to set breakpoints at one or more
address locations with a counter number.

a) Select the Breakpoint or option.

b) Enter the breakpoint address(es) and counter
in the format- “breakpointAddress1
breakpointAddress2 …, counter”. This
means that a breakpoint will be set at locations 0x01, 0x02, and 0x04 with
the counter set to “1”.

c) Click OK button to save the settings. You
should see the group breakpoints indicated
in the Editor window or as shown in the
example figure at right.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 41

Chapter 2

d) Click Go command (Debug Go) to see
the steps and result of the code execution as
shown in the figure at right.

● Breakpoint nest Select this option to set nested breakpoints consis-
ting of groups of address locations with each group
assigned with a counter number.

a) Select the Breakpoint nest option.

b) Enter the breakpoint address(es) and a counter
in the format of – “breakpointAddress1
breakpointAddress2 …, counter”. The figure
at right shows an example with “(0X00, 0X01) (0X03, 0X02).” This
means that the program will run address 0x03 twice, run address 0x00
only once and then terminate.

c) Click OK button to save the settings. You
should see the breakpoints indicated in the
Editor window or as shown in the figure at
right.

d) Click Go command (Debug Go) to see
the steps and result of the code execution as
shown in the figure at right..

42 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

NOTES

1. You can only set breakpoints after performing dump action. If you
try to set breakpoint without dumping, a pop-up message will
display to prompt you to execute dump action.

2. Breakpoints (solid blue dot) created through the Address
Break Point command (as explained above) are independent from the breakpoints
(solid red dot) created individually by double-clicking on the
pointed address (or by pressing F9). Since they do not
conflict with each other, the blue and red address
breakpoints can co-exist at the same time and at the same
address location. However, the blue breakpoints has the
priority over the red ones when Go command is executed.
Hence, any existing solid red dot breakpoints are ignored

3. As the Address Breakpoints dialog created blue
breakpoints has the priority over the individually-created
red breakpoints, the solid red dots turns into hollow red
circle when both types of breakpoints occupy the same address. Once the blue
address breakpoints are cleared, the hollow red circle becomes solid again. The red
address breakpoints are applicable only when the blue ones are all cleared.

4. To clear all blue breakpoints, do either of the following:
 ● From the menu, click Debug Clear All Address Break Point
 ● Press the shortcut keys CTRL + ATL + A

5. To clear individual or a range of blue breakpoints, do the following:
 a) From the menu, click Debug Address Break Point (or press Alt+A)
 b) From the resulting Address Breakpoint dialog (figure below), which displays all

the existing blue breakpoints, select the specific or range of breakpoint(s) to
delete from the dialog.

 c) Click Delete button to remove the selected breakpoint.

You can also enter the
specific or range of

address breakpoint(s)
you want to delete here

Figure 2-11b Address Breakpoint Dialog with Selected Individual
 or a Range of Blue Breakpoints to be Cleared

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 43

Chapter 2

2.1.6 Tool Menu
Connect Set proper connection between

target IC & connecting port

Check ICE
Memory

Check available memory from
ICE

Get Checksum
from Project

Obtain checksum from the
compiled program

Piggy back
MIX format

Create a MIX file to write
piggybacked into EEPROM

Figure 2-12 Tool Menu

Piggy back Hi
Lo format

Create a couple of files with
extension names “Hi” and
“Lo,” which are used to write
piggybacked into EEPROM

Clear all output mapping line Clear program mapping lines from output
window

Get TBL code position Obtain TBL code position

Piggy back MIX2 format Applicable to EM78813 & EM78815 only.

If an original 8bit is used to piggyback and fit
into 16bit, the piggybacked high byte in 8bit
will become low byte in piggybacked 16bit.

Compute Execution Time Calculate the execution time between two
breakpoints. See next section below.

Move data from file to sram Applicable only to EM78815. See details in the
sub-section below (Section 2.1.6.2)

Speed Up Debug For C Compiler use only

2.1.6.1 Computing Execution Time
Follow the steps below in calculating execution instruction time of ICE:

1) Click Compute
Execution Time
command, then the
following dialog
displays. Enter the
required ICE
frequency and
instruction period and
click OK button.

Figure 2-13a Compute Execution Time Setup Dialog

44 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

2) Execute the Project Trace Log command (or F2). The trace buffer info
is then displayed in the Message tab sub-window of Output window.

Figure 2-13b Compute Execution Time Trace Buffer Display from Message Tab Sub-Window
 of Output Window

3) Then look for the execution time result from Information tab sub-window
of Output window.

Figure 2-13c Execution Time Result Displayed from Information Tab Sub-Window
 of Output Window

2.1.6.2 Moving Data from File to SRAM (Applicable to EM78815
only)

The eUIDE supports moving data to external 512K byte SRAM board which
allows the use external SRAM as a replacement for the slower flash. With this
new feature, you can move data from binary file to external SRAM and use
external SRAM to develop program with program size of over 64K words.

With your hardware properly connected and ready to debug your program,
access the data from external memory. Now, replace external flash ram with
external SRAM. Then move of data from binary file to external SRAM and
dump code to external SRAM as further discussed in the following pages.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 45

Chapter 2

 Move Data from Binary File to External SRAM

1) Execute Debug Reset (F6).

IMPORTANT!
You need to initialize the ICE environment and eUIDE by executing reset (F6)
before moving binary data into external SRAM. Otherwise, data transfer to SRAM
will fail. However, if you have just performed a reset after connecting the ICE or is
already in the process of debugging the program, you may skip Reset.

2) Click Tool Move data from file
to SRAM command.

3) When the resulting dialog (right
figure) appears, browse for the
Binary file name you want to
operate and enter the Data Begin
Address and Length into their
respective text boxes.

 Be sure to read the notes at the
bottom of dialog, and then press OK
button to move your data. You may
enable the Checking after dumping
checkbox to verify data after
finishing the process. When a byte in
error is encountered, verification
process is aborted.

Figure 2-14 “Move data from file to
 SRAM” Dialog

The External-Code-Size box shows how many bytes your program code is
over 64K words. So allow your Data Begin Address to be larger than
External-Code-Size.

The maximum Data Begin Address is 524,288 (512K byte) and the Length
is 262,144(256K byte). So if the data you want to move from binary file to
external SRAM is over 262,144 byte (256K byte), you have to partition
your binary file into two files and move your data twice.

Example:
Assuming you have a 512K byte external SRAM, a binary file with filename
“Big5.bin,” and its size is 393,216 byte (384K byte), and want to move all the
contents of “Big5.bin” into external SRAM from the Data Begin Address
131,072. The file, being over 256K byte, is partitioned into two files; e.g.,
“Big51.bin” and “Big52.bin” with sizes of 262,144 byte (256K byte) byte and
131,072 byte (128K byte) respectively.

46 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 47

First, move “Big51.bin” data into external SRAM by setting Data Begin
Address at 131,072, Length at 262,144, and the “Big51.bin” folder as Binary
file name. The moved data will be located from address 131,072 to address
393,215.

When “Big51.bin” data transfer is completed, then process to move “Big52.bin”
into external SRAM by setting Data Begin Address as 393,216, Length at
131,072, and the “Big51.bin” folder as Binary file name.. The moved data will
be located from address 393,072 to address 524,287.

It is highly recommended to complete moving partitioned data in one
successive process.

 Dump Code to External SRAM:

If your program code is over 64K words, click Project Dump to ICE (F3) to
dump program code to ICE. eUIDE will process and check code that is under
64K words. If your program code is less than 64K words, eUIDE will not
process dumping to external SRAM as discussed in Section 2.1.7.4.

If your code is over 64K words, eUIDE will dump the code into external
SRAM. It usually takes about 45 seconds to completely dump the code of 64K
words. Actual dumping time is dependent on the code size over and above the
64K words. You can enable the External Code-checking checkbox in
Environment setting Dialog (see Section 2.1.7.4) to check dumping process
and result.

It is highly recommended to enable the External Code-checking option during
the first dumping and disable it when repeating to dump the same file to save
another about 40 seconds.

Chapter 2

2.1.7 Option Menu
ICE Code Setting Set code option for the selected

microcontroller
Font… Define font for Editor windows

(fonts for other windows are fixed)
Debug Option

Setting
Set debugger variables options in
the dialog shown in Figure 2-16
below

Dump ASPCM Dump to Data ROM Figure 2-15 Option Menu

Accelerate
Reading Registers

Applies only to USB ICE. Read
registers quickly when frequency
is over 2MHz as explained in
Section 2.1.7.2 below

View Setting Set the eUIDE window view variables as explained in
Section 2.1.7.3 below

Environment setting Set eUIDE environment variable, e.g., whether list/
map file is to be created or not, and the number of
Editor windows to display as explained in Section
2.1.7.4 below

ICT Execute ICE test
Customize… Customize toolbars, menus, and accelerators. See

Section 2.1.7.5 below for details.

2.1.7.1 Debug Option Setting

Set the debugger variables options with the following dialog. The options are
divided into four blocks as illustrated below.

Figure 2-16 Debug Option Setting Command Dialog

48 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 49

a) Dumping codes and checking: eUIDE will check the hardware memory
before dumping codes.

b) Interrupt disabled after break: Interrupt is disabled when a breakpoint is
encountered. It is used to avoid any interrupt from occurring when screen is
updating as TCC2, COUNTER1, and COUNTER2 will keep on working
after program is stopped. Therefore, the disabled interrupt must remain
active; otherwise users cannot debug the program.

c) Default breakpoint counter: See Section 3.9 of Chapter 5, Debugging a
Project for details.

d) Show source code in trace log: In the Output window, the trace log is set
by default to display the disassembler contents only. If this function is
enabled, the address source level breakpoint generated by the trace log
address will also appear in the Output window.

e) Step into macro instruction when Debugging: When this option is
enabled, click Debug StepInto (F7) to run the program instructions
including the macro step-by-step. To run the macro code in the background,
click StepOver (F8). As a new feature, you can now disable this checkbox
to run the macro in the background, regardless of whether you click
StepInto (F7) or StepOver (F8). Please remember that the instruction line
that is currently being executed will stop at the macro address location
(shaded in green). This location will point to the first line of the macro code.
Click StepInto (F7) to execute the first macro instruction and then its stop at
the next macro instruction (shaded in green again).

Example:
1. test macro
2. nop
3. nop
4. endm
5. org 0x0
6. jmp main
7. main:
8. nop
9. test
10. nop
11. jmp $

Per above code example, if the program execution stops at Line 8 (shaded in
green on screen), click StepInto (F7) to execute Line 8 and then execution
stops at Line 9. Note that in the previous eUIDE version, it stops at Line 2
of the macro.

Chapter 2

As Line 9 is actually linked to Line 2 address, clicking StepInto (F7) will
execute the code at Line 2 and stops at Line 3. If you click StepOver (F8),
the program executes the complete macro instructions (Line 2 & Line 3) and
stops at Line 10.

2.1.7.2 Accelerate Reading Registers

Figure 2-17 Accelerate Reading Registers Command Dialog

When you use USB ICE and the frequency is over 2 MHz, you can enable this
capability. But it is not 100% stable. If you see some abnormal appearances,
try to disable this option.

NOTE
If you select IRC when you set the code option, eUIDE may enable this option
automatically according to the chosen frequency.

2.1.7.3 View Setting
Set the eUIDE window view
variables or properties.

 Figure 2-18a View Setting Command Dialog

50 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

a) File Name in Project Window:

Figure 2-18b View Setting Showing Differences between “File Name” (Left) vs. “File name
 with Path” (Right) Options

b) Show Line Numbers:

 Figure 2-18c View Setting Showing Differences between “Column On” (Left) vs.
 “Column Off” (Right) Options

c) Tab Width: customize tab size.

d) Add defined label to watch automatically: (Enable after Dump)
 When checkbox is enabled, definite variables are automatically appended

with rpage/rbank/iopage when displayed in Watch Window.

Figure 2-18d View Setting Showing the Appended Definite Variable “rpage” Displayed
 in the Watch Window

e) Show "Unreferenced variable": when enabled, the build assemble code
will check and determine whether the variables were utilized or not.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 51

Chapter 2

f) Show defined label in Register Window: (Enable after Dump)
 When enabled, Register name are displayed as label name in the Register

Window. If the label name length is over 6 characters, Register name will
display the first six characters, and tooltip displays complete name.

 When disabled, the Register name will appear as initial name in the Register
Window.

g) Show program Rom: show the program code in the Program Rom
sub-window of Output window.

2.1.7.4 Environment Setting

Set the eUIDE environment
variables e.g., whether LIST/
MAP file is to be created or
not, and the number of Editor
windows to display.

a) Create List file: If selected,
the LIST file is created after
the related project is
assembled. The LIST file
will include line number,
address, program code, and
source file.

b) Create MAP file: If
enabled, the related LIST

Figure 2-19 Environment Setting Command Dialog

file is created after linking to a project. The MAP file will include public
symbol name and address.

c) Recent File List: The number of recently closed filenames to be saved in the
ICE. The maximum number of sub-editor windows that can be
accommodated is 10.

d) Recent Project List: The number of recently closed project names to be
saved in the ICE. The maximum number of sub-editor windows that can be
accommodated is 10.

e) Auto Dump Over 64K: For EM78815 only. If checkbox is enabled, all
program codes are dumped into the hardware.

f) External Code checking: For EM78815 only. If selected, the process of
dumping program (or data) to external SRAM is monitored and checked.

g) Show Trace Log Under 64K: For EM78815 only. If enabled, eUIDE will
check the 64K program code when Go, Free Run, or Go To Cursor
command from Debug menu is executed. The maximum length of trace log
is 8K words.

52 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

2.1.7.5 Customize…

The Customize dialog
displays with four tabs as
shown at right. The following
describes the function of each
tab:

a) Commands tab:
Select this tab to display all
available commands under
a selected category. Then
drag and drop a command
into toolbars, menu bar, or
into a drop-down command
menu (from menu bar). To

Figure 2-20a Customize Command Dialog Showing
“Command” Tab

restore default settings, go to Toolbar tab and click Reset All.

b) Toolbars tab:
The Toolbars tab allows
you to enable/disable the
Build and Standard
toolbars but not the Menu
Bar. You can however,
Reset/Reset All all
toolbars to restore the
default settings of a
particular or all toolbars.
Furthermore, you can
create your own new
unique toolbar which you
can later Rename or

Figure 2-20b Customize Command Dialog Showing
“Toolbar” Tab

Delete from this tab. You can also add/remove text labels to the toolbar
buttons by clicking on the Show text labels check box.

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 53

Chapter 2

c) Keyboard tab:
The Keyboard tab allows
you to create/remove the
shortcut keys for the
commands of a selected
command category. The
procedure is explained
below:

 Creating a shortcut key:
After selecting a Category
and Commands option
from their respective
boxes, enter your custom

Figure 2-20c Customize Command Dialog Showing
“Keyboard” Tab

shortcut key into the Press New Shortcut Key box. eUIDE will auto-detect
and determine whether the new shortcut key has already been assigned or not.
If it has already been assigned, the pertinent command name (with which the
shortcut key is currently assigned) will display under Assigned to: field, and
you need to directly enter another shortcut key. Otherwise, [Unassigned]
will display. Then click Assign button to apply.

 Removing an existing shortcut key:
After selecting a Category and Commands option from their respective
boxes, the corresponding command shortcut key (if available) will appear in
the Current Keys box. Select the shortcut key you want to remove and click
Remove button to delete.

 Restoring all shortcut keys to their default settings:
Click Reset All button to reset all command shortcut keys back to the eUIDE
default settings.

 Saving/Loading settings:
To save your custom shortcut keys for future use, e.g., when upgrading
eUIDE to a new version, click Save to File button to store the settings to a
file (with a “.KEY” file extension). After installing a new version of eUIDE,
you can simply click Load from file button to re-apply your custom shortcut
keys into the new eUIDE.

54 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

Chapter 2

 Option tab

Figure 2-20d Customize Command Dialog Showing “Option” Tab

Use the Option tab to set the size of the toolbar buttons and specify whether to
display screen tips and shortcut keys (where applicable) when pointing at the
button. You can also set to display the eUIDE sub-windows to look like that of
Windows 2000.

2.1.8 Window Menu
New Window Open a new (or split) Editor

window
Cascade Rearrange all Editor window

active files so that they will
appear overlapping in sequence
with their respective title bar
fully visible

Tile Vertical Rearrange all opened Editor
windows vertically

Figure 2-21 Window
 Menu Tile Horizontal Rearrange all opened Editor

windows horizontally
Arrange Icons Arrange all opened file filenames in a single line

formation (minimized into multiple file icons) at the
bottom of the Editor window.

NOTE
This command is effective only after clicking the
Minimized button () at the right end of the eUIDE
window Menu bar.

Close All Close all opened files
Windows… Show Select Window Dialog

EM78 Series IDE User’s Guide 2BThe eUIDE Commands • 55

Chapter 2

56 • 2BThe eUIDE Commands EM78 Series IDE User’s Guide

2.1.9 Help Menu
User Manual Open the eUIDE User’s Manual

Check New
Version…

Check new version of eUIDE from
ELAN

Figure 2-22a Help Menu
About… Shows the current version of eUIDE

program and other information
including a “read me” file on recent changes of the eUIDE

About… Shows the current version of eUIDE program and other
information including a “ReadMe” file on recent
changes of the eUIDE

Figure 2-22b About Command Dialog

Register ELAN On-line registration with ELAN

Update USB Glue
Firmware

Update USB UICE firmware if necessary

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 57

Chapter 3
Getting Started
3.1 Overview

3.1.1 System Requirements
The EM78 Series eUIDE requires a host that meets the following
specifications:

 IBM PC (Pentium 100 or higher is recommended) or compatible computers
 Win2000, WinME, NT, or WinXP and Vista-32
 At least 40 MB (or more) free hard disk space
 At least 256MB of RAM. 512MB or more is recommended
 Mouse and USB connectors are highly recommended

3.1.2 Software Installation

NOTE
 Please note that eUIDE can only be installed in the predefined directory

C:\EMC\eUIDE. This restriction is necessary to prevent assigning an installation
path that may contain space character that could cause serious error during
compilation.

 The file paths (*.apj, *.cpj, *.dt, *.c, *.h, and *.inc) must NOT contain any
space. Any space in the path will cause error during compilation.

The eUIDE compiler and ICE driver are is included in eUIDE program
package. When installing the eUIDE, the compiler is also automatically
installed.

If this is your first time to install the eUIDE program, you need to reboot your
computer after eUIDE installation is completed because of the printer port
driver (DLPortIO). If you use USB ICE under Windows 9X, you also need to
reboot.

If it is not the first time to install eUIDE, the setup program will uninstall the
previous installation then install the new one.

During installing, users cannot change the default install path.

When the operating system is searching the USB ICE hardware, please make
sure the power of ICE is set to ON. You can see the ELAN USB ICE through
the OS Device Manager if the driver is installed and the ICE is connected
correctly.

Chapter 3

Figure 3-1 OS Device Manager Confirming ICE Installation

3.1.3 ANSI Compatibility
Compliance with the ANSI standard is limited to free-standing C to
accommodate the unique design characteristics of the EM78 Series
microcontrollers.

3.2 Hardware Power-up
With the ICE properly connected to target board, PC, and power source, switch
on ICE power and observe its red power LED lights up. If the target board
derives its power from ICE, the yellow LED lights up as well.
Then launch your eUIDE IDE software when ICE and target board power-up is
confirmed to function normally.

3.3 Starting the eUIDE Program
To start eUIDE Program, click on the eUIDE icon from desktop or from
Windows Start menu. When starting from the Start menu, click Programs, then
look for eUIDE group and click on eUIDE icon.

3.3.1 Connect Dialog

Figure 3-2 eUIDE Program Connect Dialog

MCU selection
filter

Select MCU

Select
connecting mode

LPT Port address
setup

Printer port
speed

Check ICE memory
condition option

58 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 59

Once the program is started, the main window of the program will initially
display the Connect dialog (figure above) to prompt you to set the proper
connection between your existing target microcontroller and connecting port.

Where:

Filter: Key-in the last 3-digits of the desired target IC, for example; “159.” The
Micro Controller combo box will display all EM78 series ICs having “159” as
its last part number digits, thus, speeding up the search for your target IC.

Micro Controller: The IC part number shown on the combo box is one of the
EM78 series. Select your target IC by clicking on the combo box arrow.

Connecting Port: Select the proper connecting port, LPT or USB for your ICE.
If USB ICE is not installed, you cannot select the USB option as the option will
be disabled. However, if the USB option is disabled and you have the USB ICE
connected with PC, go to your OS Device Manager and try the following steps:

1) Turn off the ICE
2) Disconnect the USB cable
3) Turn on the ICE
4) Reconnect the USB cable
5) Then check if the USB option is enabled

LPT Port Address: The system will automatically detect the printer port
address (default is 378H) which is already connected with the hardware. After
the connection is successful, eUIDE will also diagnose the hardware right away.

I/O Wait Times: It depicts the I/O response speed. Increase the value for
slower speed and decrease for faster speed. Usually, the bigger the value, the
better is the stability.

Check ICE Memory: You may enable this check box to check the ICE
memory condition.

Long Delay Time: When you are unable to connect your computer to ICE,
enable this check box. This will allow a longer handshaking time between your
computer and ICE. Click OK button when done.

3.3.1.1 Reconnection

If a new ICE replaces the current one, it is necessary to reconnect it with PC.
Click Tool Connect to reconnect. The Connect dialog (Figure 3-2 above)
will pop-out again. It will take a longer waiting time to establish communi-
cation between the PC and hardware during reconnection under the same
hardware environment.

Chapter 3

3.3.2 Code Option Dialog

Figure 3-3 eUIDE Code Option Dialog

The Code Option dialog is displayed next. Check all items to confirm the
actual status of the ICE and make appropriate changes as required. Then click
OK button. You need to get acquainted with MCU or ICE specifications to able
to select code option correctly. Otherwise, proper connection cannot be achieve
with ICE. You can enlarge or reduce the dialog’s size by dragging its edges.
This dialog applies to both USB and printer port modes.

NOTE
Not all EM78 Series MCU requires the Code Option setting.

3.3.3 Accelerate Reading Registers Dialog
If you are using USB ICE, the Accelerate Reading Registers Dialog dialog
will pop up after setting code option. Refer to Section 2.1.7.2, Accelerate
Reading Registers for details.

3.4 Create a New Project

3.4.1 Using the Project Wizard (Project Project
Wizard)

The project wizard consists of several dialogs which will walk you through a
step-by-step setting up of your project.

Step1 – Select a controller
Step2 – Select controller Code Option
Step3 – Create a new project: Set Project Name and Type
Step4 – Add a new file or an existing file to your project
Step5 – Summary

60 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 61

Step 1 - Select a controller

Select a controller for your project from the list, the click Next button.

Figure 3-4a Project Wizard Step 1 of 5 Dialog

Step 2 - Set controller Code Option

If the controller does not require Code Option setup, skip this dialog.

Figure 3-4b Project Wizard Step 2 of 5 Dialog

Click this button
to return to

previous step

After setup is done,
click this button to

go to next step

Click this button
to abort setup

and exit Wizard

Chapter 3

Step 3 - Create a new project: Set Project Name and Type

 Figure 3-4c Project Wizard Step 3 of 5 Dialog

Enter a project name, browse or create folder to save the new project, and the
project type (ASM or C) for your new project.

Selecting Create a project
with file option and clicking
on Next button will directly

jump to the next step
(Step 4), Add a new file or

an existing file to your
project (see below).

Selecting Create an
empty project option and

clicking on Next button will
irectly jump to Summary

 (Step 5)
d

dialog

 To set the directory:
○ Type in the path to an existing directory or to a new directory, and click

the Next button. You will be prompted directly to Step 4 to enter the
directory.

○ Click “…” to browse to an existing directory or to one level above where
you wish to place a new directory. Otherwise, complete the path if you
are creating a new directory and then click Next. You will be prompted
to create the directory if it does not exist.

 To set Project Type:
○ Click ASM option button to create an Assembly language project
○ Click C option button to create a C language project

 To set Library Output:
○ Select Normal (*.cds) from Library Output pane to create a general

project. It will generate objective (*.bbj) file, list (*.lst) file, binary
(*.cds) file after project is created (with Build command).

○ Select Library (*.lib) to create a library project. It will generate
objective (*.bbj) file, list (*.lst) file, library (*.lib) file after project is
created (with Build command).

62 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 63

Step 4 - Add a New File or an Existing File to Your Project

Figure 3-4d Project Wizard Step 4 of 5 Dialog

 To “Create” a new empty file:

Enable the Create a new file button and type a filename in the File Name text
box. A file (with the defined filename) will be created and save in the folder
location as defined in the File Location text box.

 To Select an existing file:

If you already have an
existing file that you would
like to add to the new project,
click the Select an existing
File button. The Insert Files
into Project dialog (figure at
right) will open. The default
folder will display in the File
Location text box as shown in
the Figure 3-4d above. Figure 3-4e Insert Files into Project Dialog

EM78Test\C153\

Chapter 3

Step 5 - Summary

Figure 3-4f Project Wizard Summary Dialog

Double-check the summarized setup information on the Summary dialog. If
further correction is needed, click Back button to return to the particular dialog
you need to change the setting. Otherwise, click Finish button to complete the
new project creation.

3.4.2 Using the New Command (File/Project New…)
To create a new project with the New… command from the Project menu,
follow the following steps:

1. From the Menu bar, click File or Project and choose New… command from
the resulting pull down menu (see figure at right).

2. The New dialog under Projects tab (shown below) for will then display after
clicking the New… command from the File menu or Project menu.

64 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 65

143

Figure 3-5c New Dialog Showing Project Tab for Creating New
Project

Figure 3-5a File Menu

Figure 3-5b Project Menu

5

6

7

3. Select Projects tab from the NEW dialog

4. Assign a name for the new project in the Project Name text box (suffix
“.apj” for ASM mode or “.cpj” for C mode will auto-append to filename).

5. Locate the folder where you want to store the new project. You may use the
Browse icon to find the appropriate folder.

6. Select the library output of your project (Normal Project or Library
Project.)

7. Then select the proper type of your project (C for C Compiler Project or
Assembler for Assembly Project.

8. Select the target microcontroller for your project from the Micro
Controller list box.

9. Click OK button after confirming all your selection and inputs.

The new project is then created with the defined project name and micro-
controller you have selected is displayed at the top of the Project window.

Figure 3-5d Project Window Showing Target IC & Project Filename

Target
Microcontroller

Project Filename
(*.apj for ASM mode or
*.cpj for C mode)

8

9

Chapter 3

3.5 Add and Remove Source Files from/to Project
You can either insert existing source files into the new or existing project, or
create new ones with eUIDE text Editor and insert them into the project.

3.5.1 Create and Add a New Source File for the Project
If your source file is yet to be created, you can take advantage of the New dialog
(by clicking NEW…command from the File or Project menu) to create your
new source file and use the eUIDE text editor to compose its content.

1. From the New dialog, click the Create a New File tab and select the type of
source file you want to create from the EMC Source File list box, i.e., *.dt
(default for Asm mode or *.c for C mode) for assembly file; *.h for header
file.

Figure 3-6a New Dialog Showing Create a New File Tab for Creating a New Source File

2

1

3

4

5

2. Select Add to Project check box (default) if you want to automatically add
the new file into your project. Otherwise clear the check box.

3. Assign a filename for the new source file in the File Name text box.

4. Locate the folder where you want to store the new source file in your disk.
You may use the Browse icon to find the appropriate folder.

5. Click OK button after confirming your inputs. You will be prompted to
start writing the newly defined source file in the Editor window.

66 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 67

NOTE

1. Do not write code over 512 lines, especially in C mode, or serious error could occur.

2. In C mode, we recommend you enable the Add new file to project check box” to
add the first C file in a new project. eUIDE supplies “main()” function, interrupt save
procedure, interrupt service routine frame, restore code in the file to develop project,
and write code on interrupt easily(see figure below). Interrupt is discussed in detail
in Section 6.10, “Interrupt Routine.” Interrupt program is very easy to develop under
TCC2.

3. Remember that C compiler can only accept one “main()” function in a project. If you
want to add another new file after the first main file was added, you can enable the
Empty File check box to add an empty file

Figure 3-6b Typical Interrupt Function

3.5.2 Add Existing Source Files to the New Project
If your source file is ready, you can immediately insert it into your new project.
1. From the Menu bar, click on Project Add Files to Project. The Insert

Files into Project dialog is then displayed.

 Figure 3-7b Insert Files into Project Dialog

Figure 3-7a Add Files to Project
 Command of Project Menu

Chapter 3

2. Browse and select the source file (or multiple files) you intend to insert into

the new project.

3. Click OK button to insert file into your new project after confirming your
selection.

3.5.3 Deleting Source Files from Project
From the Project window, select the file(s) you wish to delete. Then press the
Delete key from your keyboard or click Project Delete Files from
Project….

Figure 3-8a Deleting Source Files Directly

 from Project Window

Figure 3-8b Deleting Project Files
 from Project Menu.

3.6 Editing Source Files from Folder/Project
3.6.1 Open Source File from Folder for Editing
You can also open an existing source file in the Editor window for a last minute
editing before adding it into the new project. To do this–

1. Click File Open command.

2. From the resulting Insert Files into Project dialog (Figure 3.7b above),
select and click on the source file you want to edit. The file is automatically
opened in the Editor window.

t Files into Project dialog (Figure 3.7b above),
select and click on the source file you want to edit. The file is automatically
opened in the Editor window.

To edit source files that are already added into the Project, see next Section. To edit source files that are already added into the Project, see next Section.

68 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 69

3.6.2 Open Source File from Project for Editing
You can edit source files that are already inserted in the project. To do so,
double click the source file you wish to edit from the Project window and the
file will open in the Editor window.

Figure 3-9 Editing Source File Directly from Project Window.

Double click to
open & edit a file

Source file
opened for editing

3.7 Compile the Project
With your source file(s) embedded into the
project, you are now ready to compile your
project using the following commands from
Project menu.

 Click Assemble (or Compile) command to
compile the active file only (generates *.lst).

 Click Build command to compile the files
modified in the project they were modified.

 Click Rebuild All command to compile all
files in the project regardless of whether they
were modified or not.

Note that in Asssembly mode, Build and
Rebuild All commands will generate objective
(*.bbj) file, list (*.lst) file, and binary (*.cds) file. In C mode, both commands
will generate objective (*.o) file, assembly (*.s) file, and binary (*.cds) file.

The compiled files are automatically saved in the same folder where your other
source files are located. Status of the assembly operation can be monitored
from the Output window as shown below.

Figure 3-10b Output Window Showing Successful Compilation

Figure 3-10a Compilation Commands
from Project Menu

Chapter 3

If error is detected during compilation, pertinent error message will also display
in the Output window with Build tag. Double click on the error message to
link to the source of error (text line) in the corresponding source file displayed
in the Editor window. If the corresponding source file is not currently opened,
it will be opened automatically.

 Figure 3-10c Output Window Showing Compilation Errors

Modify source files to correct the errors and repeat assembling and linking
operations.

In C mode, there are many useful messages reported in the Output window’s
Information tab if compiling succeeds. For example, it tells you the used ROM
size, available ROM size, used RAM data in figure, used data register in figure,
IO control data in figure, call depth, and max call depth. The most important
message is the characters “C” in register data location 0x10~0x1F. These “C”
characters tell programmer which and how many common registers to save and
restore in interrupt service routine. Refer to Section 6.1, Register Page (rpage)
for further details.

Figure below shows these messages which advice you to save common register
0x10 and 0x11 when MCU has just ran into interrupt service for C system and
restore these two common registers before leaving interrupt service.

Double click to link to
the source of error

Figure 3-10d Output Window Messages after Compiling Successfully

70 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 71

3.8 Dumping the Compiled Program to ICE
With the source files deprived of its errors and
successfully compiled, download your
compiled program to ICE by clicking Project

 Dump to ICE or its corresponding
shortcut key (F3).

Figure 3-11 Dump to ICE Command
 from Project Menu

3.9 Debugging a Project

Fig. 3-12a Debugging Commands
 Drop-Down Menu

With the compiled program successfully
downloaded to ICE, you are now ready to debug
the files. Be sure the ICE is properly connected
to your computer.

Full debugging commands are available from the
Debug Menu (shown with its corresponding
shortcut keys in the drop-down menu at right). A
number of the frequently used debugging icons
are also available from the eUIDE Program
Toolbar.

Figure 3-12b Toolbar for Debugging Commands

Where:

F5

Go – Auto dump and run program starting from the current program
counter until breakpoint is matched and breakpoint address is
executed.

F10

Free Run – Auto dump and run program starting from the current
program counter until the Stop button of the Stop Running
dialog is clicked. All defined breakpoints are ignored while the
program is running.

F6

Reset – Perform hardware reset (register contents are displayed with
initial values). ICE will return to its initial condition.

Chapter 3

F7

Step Into – Auto dump and execute instructions step-by-step
including subroutines (with register contents updated at
the same time).

 If the RAM of your computer is full, do not click
command continuously.

F8

Step Over – Same as Step Into command (see above), but excluding
subroutines and the CALL instruction is executed as Go
command.

 If the RAM of your computer is full, do not click
command continuously.

Ctrl+F7

Step Out – Auto dump and run program starting from the current
program counter until the RET / RETI / RETL
instruction address is executed.

F4

Go to Cursor– Auto dump and execute from current program counter to
the location where the cursor is positioned with
breakpoints ignored.

Run from Selected Line – Start running command from the line where

the cursor is positioned.

F9

Toggle Breakpoint – Click command with cursor positioned on the line.
If line is set with breakpoint, it will be removed.
Otherwise, breakpoint is set.

Clear All Breakpoints – Remove all existing breakpoints.

Trace Back After trace log is executed; trace the log backward

step-by-step from the last executed address to the address
located before the current executed address (bottom to
top).

Trace Forth After trace log is executed, retrace the log forward

step-by-step from the last executed address to the
address where Trace Back was started (top to bottom).

Stop: Stop Free Run or Go with breakpoint ignored.

During debugging, the contents of Program Counter, Registers, and RAMs are
read and displayed each time the program is stopped to provide important
interim information during program debugging.

72 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 3

EM78 Series IDE User’s Guide 4BGetting Started • 73

3.9.1 Breakpoints Setting Breakpoint

To assign a breakpoint,
position cursor on the line
where a breakpoint is going to
be set, then double click.
Observe the line highlighted in
green.

With cursor positioned on the
line, you can also click on the
Insert/ Remove Breakpoint
icon (hand shape) on the
toolbar to set a breakpoint, or
press F9.

Likewise, the defined break-
point is cleared if you double
click on it again, or the hand

Figure 3-13 Active Source File with a Defined
 Breakpoint

icon is clicked the second time while the cursor is positioned on the defined
breakpoint. To clear all existing breakpoints, click Clear All Breakpoints
command from Debug menu.

Chapter 3

74 • 4BGetting Started EM78 Series IDE User’s Guide

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 75

Chapter 4
Assembler and Linker
4.1 Assembler and Linker Process Flow

*.dt or *.asm

EASM

Including files

EASM EASM

List file (*.lst)

Object file (*.obj)

Map file(*.map)

Target file (*.cds)

EMC Linker

Figure 4-1 Assembler and Linker Process Flow Chart

Chapter 4

76 • 6BAssembler and Linker EM78 Series IDE User’s Guide

4.2 Statement Syntax
[label [:]] operation [operand] [,operand][; comment]

All fields are not case-sensitive, and separated by space or tab.

Label－The [:](colon) is optional and is followed by one or more spaces or
tabs.

A label consists of the following characters-
 A~Z a~z 0~9 _

but with some restrictions:
 0~9 must not be the first character of a name
 Only the first 31 characters are recognized
 To reserve colon (:) is recommend to programmers, because it could be

more readable.

4.2.1 How to Define Label
a) zeroflag equ RXX(.YY)

Ex1: zeroflag == R3.2
Ex2: status == R3

b) zeroflag_1 equ 0xXX(.YY)
Ex1: zeroflag_1 == 0x3.2
Ex2: status_1 == 0x3

c) zeroflag_2 equ zeroflag(.ZZ) (zeroflag_1 equ RXX(.YY))
Ex: status_2 == R3

 zeroflag_2 == Status_2.2

d) zeroflag_3 equ zeroflag1(.ZZ) (zeroflag equ 0xXX(.YY))
Ex: status_3 == 0x3
 zeroflag_3 == Status_3.2

e) Add label with rpage / rbank / iopage
“range” and select “Special Register(R0..R1F)” from Watch dialog are the
same.
“rbank” and select “RAM(bank)” from Watch dialog are the same.
“iopage” and select “Control Register” from Watch dialog are the same.

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 77

Ex: status_3 == 0x3:rpage 0
 zeroflag_3 == status_3.2 (status_3 is already defined in rpage 0)
 temp == 0x20:rbank 1
 output == 0x6:iopage 1
 outputbit_2 == 0x6.2 (output is already defined in iopage1)

IMPORTANT!!
0x3:rpage 0 Do not insert space before and after colon (:) character.

f) Derive Register or Bit information from label__R(Duplicate _) or
label__B:
Ex: zeroflag == 0x3.2
 mov a, zeroflag__R ;equal mov a, 0x3
 mov a, zeroflag__B ;equal mov a, 0x2

IMPORTANT!!
This method is only displayed automatically in Watch window. When using this
variable, you must use register that is defined in the ICE specification for register or
bank page change.

Operation－An assembler instruction or directive
Directives give the direction to the assembler
Instruction examples:
 Example 1: MOV A,@0X20
 Example 2: ADD A,@0X20
 Example 3: zeroflag == R3.2
 status == R3
 carryflag == status.0

 org 0x0
 jmp start
 start:
 BC zeroflag
 BS status,2
 BC carryflag
 BS status,0
 BC 0x3,2
 BS R3,2

Examples of directives:
 Example1: ORG 0X20
 Example2: END

Chapter 4

78 • 6BAssembler and Linker EM78 Series IDE User’s Guide

Operands－One or more operands separated by commas

Comment－Comments include line comment and block comment
 Line comment syntax: preceded by a “;” (semi-colon)
 Example: MOV A,@0X20 ; move constant value 32 to

 accumulator
 Block comment: /* comment statements */

4.3 Number Type

Type Expression 1 Expression 2 Expression 3

Decimal 0D<digits> <digits>D <digits>

Hexadecimal 0X<digits> <digits>H

Octal 0Q<digits> <digits>Q

Binary 0B<digits> <digits>B

NOTE
If the first digit is “A~F” or “a~f” on hexadecimal expression 2, then you must add “0” to
precede the digits.

4.4 Assembler Arithmetic Operation
The arithmetic result must be calculated after assembler. If the arithmetic
expression cannot be calculated on assembler time, then error message will
display. At the same time, the arithmetic expression cannot support floating
point, so floating point number is self-transferred to integer.

TRUE and FALSE: TRUE is 0xFF, FALSE is 0x00.

The following operators give a summary of the operators, in order of priority.

a) Parentheses (and)

b) Unary operators
 ! Logical NOT
 ~ Complement
 － Unary minus

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 79

c) Multiplication, division, modulo, shift
 * Multiplication
 / Division
 % Modulo
 << Logical shift left
 >> Logical shift right

d) Addition arithmetic operators
 ＋ Addition
 － Subtraction

e) Bit AND operator
 & Bit AND

f) Bit OR and XOR operators
 | Bit OR
 ^ Bit XOR

g) Logical AND
 && Logical AND

h) Logical OR
 || Logical OR

i) Comparison
 == equal
 != not equal
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to

4.5 Program Directives
a) ORG: set value of program counter
 Syntax: ORG <expression>
 Example: org 0x200

b) EQU or == (Duplicate =): definition constant value
 Syntax: <label> EQU <expression>
 Example 1: R20 equ 0x20
 Example 2: R20 == 0x20

Chapter 4

80 • 6BAssembler and Linker EM78 Series IDE User’s Guide

c) Comment
 Line comment
 Syntax: ; < string >
 Example: ; this is the comment string

 Block comment
 Syntax: /* <strings> */
 Example: /* this is block comment example including multi lines */

d) EOP: end of the program ROM page with which the EOP instruction is
belong to

 Syntax: EOP
 Example: org 0x10
 mov 0x20,A
 inc 0x20
 eop
 inc 0x20

 Result after assembling (the first column is address):
 org 0x10
 0010 mov 0x20,A
 0011 inc 0x20
 eop
 0400 inc 0x20

e) END: the end of program. The rest of the program code after END
instruction will not be assembled.

 Syntax: END
 Example: org 0x10
 mov 0x20,a
 inc 0x20
 end
 mov 0x20,a

Result after assembling (the first column is address):
 org 0x10
 0010 mov 0x20,a
 0011 inc 0x20
 end
 mov 0x20,a

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 81

f) PROC, ENDP: definition of subroutine. The directives make the program

more comprehensible.
 Syntax: <label> PROC
 <statements>
 ENDP

 Example: BANK0: PROC
 BC 0X04,6
 BC 0X04,7
 RET
 ENDP

NOTE
PROC and ENDP directives only make the program more comprehensible. So RET
instruction must exist in the subroutine.

g) INCLUDE: include other source files. The instruction makes the program
more refined and clear.

 INCLUDE function can include system default files and user defined files.
 1) Include system default files; e.g., EMC456.INC, EMC32.INC:
 Syntax: INCLUDE <filename>
 Example: INCLUDE <EMC456.INC>
 2) Include user defined files:
 Syntax: INCLUDE “file path + file name”
 Example: INCLUDE “C:\EMC\TEST\TEST456.INC”

 The user defined file must include full folder path and filename.

NOTE
The source files usually include variable definition, macro definition, and subroutine
definition.

h) PUBLIC and EXTERN: The defined scope of the global label is public or
external. Although the eUIDE software is project oriented,
a project can contain two or more files. If the global label is
referenced by another file, the global label must be defined
to PUBLIC in the defined file, and must be defined to
EXTERN in the referenced file.

 PUBLIC:
 Syntax: PUBLIC <label>[,<label>]

 EXTERN:
 Syntax: EXTERN <label>[,<label>]

Chapter 4

82 • 6BAssembler and Linker EM78 Series IDE User’s Guide

 PUBLIC and EXTERN instructions can be defined at any location of a file

that contains one or more PUBLIC or EXTERN instructions.

 Example: A project contains two files, one is TEST1.DT; the other is
TEST2.DT.

 TEST1.DT:
 org 0x00
 Public start
 Extern loop1
 Start:
 mov a,@0x02
 mov 0x20,a
 jmp loop1

 TEST2.DT:
 org 0x100
 Public loop1
 Extern start
 Loop1:
 inc 0x20
 jmp start

 The label of “Start”, which is defined in the “TEST1.DT” file and is
referenced by the “TEST2.DT”file; must be announced as “PUBLIC” in the
“TEST1.DT” file and “EXTERN” in the “TEST2.DT” file.

 The label of “loop1”, which is defined in the “TEST2.DT” file and is
referenced by the “TEST1.DT” file; has to be addressed as “EXTERN” in
the ‘TEST1.DT” file and “PUBLIC” in the “TEST2.DT” file.

i) VAR: The instruction defines variable name during assembly time, so the
value of variable is only changed during the assembly time.

 Syntax: Label VAR <expression>

 Example: test var 1
 mov a,@test
 test var test+1
 mov a,@test

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 83

j) MACRO, ENDM: The instruction defines macro
 Syntax: <label> MACRO <parameters>
 statements
 ENDM

 Example: bank0 macro
 bc 0x04,6
 bc 0x04,7
 endm

IMPORTANT!!
 The maximum number of macro is 32
 The parameters must be a definite address as shown in the examples below.

Example1:

If “org 0x400” is omitted, the following
conditions will result:

a) The required “aa_label” macro
parameter (num) becomes unknown.
Hence, macro cannot expand.

b) As macro fails, all its instructions
cannot be implemented.

c) The error message “error A037: The
operand value cannot be calculated”
will then display

To prevent the above error, address
“org 0x400” should be added before
“bb_label.”

Chapter 4

Example2: (EM78P510N)

FCALL and FJMP are reserved words.
These two words will determine whether
the program code exceeds page or not.

Example3: (EM78P447S)

FPAGE, FCALL, and FJMP are
reserved words. These two words will
determine whether the program code is
over page or not.

84 • 6BAssembler and Linker EM78 Series IDE User’s Guide

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 85

k) MACEXIT: this instruction is only used in the macro defined instructions.
If the MACEXIT instruction is assembled, then the remaining
macro instructions (if any) are not assembled.

 Syntax: MACEXIT
 Example: Source:
 test var 5
 bank0 macro
 bc 0x04,6
 if test>4
 macexit
 endif
 bc 0x04,7
 endm
 bank0

After assembly…(the first column is address)
0000 bc 0x04,6

Because the “test” variable is equal to five, so the expression “test>4” is true,
and the “macexit” instruction is assembled. Accordingly, as “macexit”
instruction is assembled, the remaining macro instructions, “bc 0x04,7,”is not
assembled.

l) MESSAGE: display the user defined message in the Output window.
 Syntax: MESSAGE “<characters>”
 Example: org 0x00
 message “set bank to 0 !!”
 bc 0x04,6
 bc 0x04,7

The user defined message (see below) is displayed in the Output window after
assembly.

USER MESSAGE: set bank to 0!!

IMPORTANT!!
The maximum number of messages is 500.

Chapter 4

86 • 6BAssembler and Linker EM78 Series IDE User’s Guide

m) $: current program counter value
 “$” is used as an operand.

 Example1: jmp $
 “jmp $” means to jump at same line as dead loop

 Example2: bc 0x04,6
 jmp $-1
 “jmp $-1” means to jump back to “bc 0x04,6”

4.6 Conditional Assembly
a) IF If the statement after “IF” expression is true, then the following

instructions are assembled until “ELSEIF” or “ELSE” or “ENDIF”.

 Syntax: IF <expression>
 <statements1>
 [ELSEIF <expression>
 <statements2>]
 [ELSE
 <statements3>]
 ENDIF

 Example: org 0x00
 bank macro num
 if num==0
 bc 0x04,6
 bc 0x04,7
 elseif num==1
 bs 0x04,6
 bc 0x04,7
 elseif num==2
 bc 0x04,6
 bs 0x04,7
 elseif num==3
 bs 0x04,6
 bs 0x04,7
 else
 message “error : bank num over max number!!!”
 endif
 endm

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 87

b) IFE: If the statement after “IFE” expression is false, then the following
instructions are assembled until “ELSEIFE” or “ELSE” or “ENDIF”.

 Syntax: IFE <expression>
 <statements1>
 [ELSEIFE <expression>
 <statements2>]
 [ELSE
 <statements3>]
 ENDIF

c) IFDEF: If the statement after “IFDEF” label is defined, then the following
instructions are assembled until “ELSEIFDEF” or “ELSE” or
“ENDIF”.

 Syntax: IFDEF <label>
 <statements1>
 [ELSEIFDEF <label>
 <statements2>]
 [ELSE
 <statements3>]
 ENDIF

 Example: org 0x00
 ice456 equ 456
 ifdef ice456
 bc 0x04,6
 bc 0x04,7
 endif

d) IFNDEF: If the statement after “IFNDEF” label is not defined, then the
following instructions are assembled until “ELSEIFNDEF” or
“ELSE” or “ENDIF”.

 Syntax: IFNDEF <label>
 <statements1>
 [ELSEIFNDEF <label>
 <statements2>]
 [ELSE
 <statements3>]
 ENDIF

Chapter 4

88 • 6BAssembler and Linker EM78 Series IDE User’s Guide

4.7 Reserved Word
4.7.1 Directives, Operators

+ - * / ==
!= $ @ # (
) ! ~ % <<

>> & | ^ &&
|| < <= > >=

DS ELSE ELSEIF ELSEIFDEF ELSEIFE
ELSEIFNDEF END ENDIF ENDM ENDMOD
ENDP EQU EXTERN IF IFE
IFDEF IFNDEF INCLUDE MACRO MACEXIT
MODULE NOP PAGE ORG PROC
PUBLIC

4.7.2 Instructions Mnemonics
ADD AND BC BS CALL

CLR COM COMA CONTR CONTW

DAA DEC DECA DISI DJZ

DJZA ENI INC INCA INT

IOR IOW JBC JBS JMP

JZ JZA LCALL LJMP MOV

NOP OR RET RETI RETL

RLC RLCA RRC RRCA SLEP

SUB SWAP TBL WDTC XOR

LCALL LPAGE PAGE BANK

NOTE
Some MCU do not have LCALL, LJMP, PAGE, and BANK instructions. You have to
study the specific MCU specification.

Chapter 4

EM78 Series IDE User’s Guide 6BAssembler and Linker • 89

4.8 Pseudo Instruction
The following pseudo instructions are supported for MCUs that have
LJMP/LCALL instructions.

Macro

Instruction Syntax Note Equivalent Instruction

XCALL XCALL Label If “label” is in current page, XCALL will
be “CALL, otherwise it will be “LCALL” CALL OR LCALL

XJMP XJMP Label If “label” is in current page, XJMP will
be “JMP, otherwise it will be “LJMP” JMP or LJMP

JCF JCF Label If carry flag =1, then JMP to label JBC 0x3,0
XJMP label

JZF JZF Label If zero flag =1, then JMP to label JBC 0x3,2
XJMP label

ADDCF ADDCF R R + Carry -> R JBC 0x3,0
INC R

SUBCF SUBCF R R – Carry -> R JBC 0x3,0
DEC R

Chapter 4

90 • 6BAssembler and Linker EM78 Series IDE User’s Guide

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 91

Chapter 5

C Fundamental
Elements
5.1 Comments

For a single line comment:
// All data in the line after the comment symbol (twin-slash mark)

will be ignored.

For Multi line comments:
/* … */ All data in the line located within the comment symbols (slash

mark + asterisk) will be ignored.

Comments are used to help you understand the program code. It can be placed
anywhere in the source program. The compiler will ignore the comment
segment of the source code, thus no extra memory is required in the program
execution.

Example:
// This is a single line comment

/*

This is the comment line 1

This is the comment line 2 */

Chapter 5

92 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

5.2 Reserved Words
The reserved words for eUIDE C Compiler are made up of both the ANSI C
conformity reserved words and the EM78 Series unique reserved words. The
following table summarizes all the applicable reserved words for this compiler.

ANSI C Conformity Words
const default goto switch typedef sizeof
break do if short union extern
case else int signed unsigned
char enum long static void
continue for return struct while

EM78 Series Unique Words

indir ind page on off
io iopage _intcall rpage
low_int _asm bit bank

NOTE
 Double and float are NOT supported by the EM78 Series C Compiler.
 _asm is added for the EM78 Series C compiler. Do not use _ASM.
 indir, ind, io, iopage, rpage are used for MCU hardware definition and declaration.

5.3 Preprocessor Directives
Preprocessor directives always begin with a pound sign (#). The directives are
recognized and interpreted by the preprocessor in order to compile the source
code properly.

5.3.1 #include
#include “file_name”:

#include <file_name>:

The preprocessor will search the working
directory to find the file.

The preprocessor will search through the
working directory first to look for the file. If
the file cannot be found in the working
directory, it will search the file from the
directory specified by the environment
variable ELAN_TCC_INCLUDE.

“#include” tells the preprocessor to add the contents of a header file into the
source program.

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 93

NOTE

 It is not recommended to include C file. Errors may occur if C file is included.

 Suppose uaa is declared as global, unsigned int (unsigned int uaa) variable in
headfile.h. Then, uaa is used in testcode.c. If you want to use uaa in kkdr.c, first
you have to declare extern unsigned int uaa before you using it in kkdr.c file. The
same approach should be used in the third or more others c source files that are to
be included in the same project.

Example 1:
#include <EM78.h>
#include “project.h”
#include “ad.c” // It may meet errors.

Example 2:
unsigned int uaa; //in headfile.h
…

#include ”headfile.h” //in testcode.c file
#include “kkdr.h” //in testcode.c file
#include “pprr.h” //in testcode.c file
main () //in testcode.c file
{
 uaa=0x21;
 test1();
 test2();
…
}

test1(); // in kkdr.h file
..

#include “pprr.h” //in kkdr.c file
extern unsigned int uaa; //in kkdr.c file
void test1() //in kkdr.c file
{
 uaa=0x38;
 test2();
……
 uaa=0x43;

}

test2() //in pprr.h file
……

extern unsigned int uaa; //in pprr.c file
void test2() //in pprr.c file
{
 uaa=0x29;
}

Chapter 5

94 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

5.3.2 #define
#define identifier
#define identifier token_list
#define identifier (parameter_list) token_list
#define identifier() token_list

The “#define” directive is used to define a string constant which will be
substituted into source code by the preprocessor. It makes the source program
more clear and logical.

NOTE
Multi-line macro definition should be cascaded with a backslash (\) in between the
lines. When using assembly code in macro, use ONLY one instruction in a line.

Example:
#define MAXVAUE 10
#define sqr2(x, y) x * x + y * y

5.3.3 #if, #else, #elif, #endif
#if constant_expression
#else
#elif constant_expression
#endif

The #if directive is used for conditional compilation. It should be terminated by
#endif. #else can be used to provide an alternative compilation. If necessary,
the program can use #elif for an alternative compilation which should only be
used for valid expressions.

Example:
#define RAM 30
#if (RAM < 10)
 #define MAXVALUE 0
#elif (RAM < 30)
 #define MAXVALUE 10
#else
 #define MAXVALUE 30
#endif

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 95

5.3.4 #ifdef, #ifndef
#ifdef identifier
#ifndef identifier

The “#ifdef” directive is used for conditional compilation of definitions for the
identifier. The “#ifndef” directive is used when the conditional compiling
codes of the specified symbol is not defined. Both these two directives must be
terminated by “#endif” and can be optionally used with “#else.”

Example:
#define DEBUG 1
#ifdef (DEBUG)
 #define MAXVALUE 10
#else
 #define MAXVALUE 1000
#endif

5.4 Literal Constants

5.4.1 Numeric Constant
Decimal:

Hexadecimal constant:
Binary digit:

Default
Digit prefix with “0x”
Digit prefix with “0b”

“Numeric constants” can be presented in decimal and hexadecimal, depending
on the prefix modifier. Binary and octonary numerics are not supported.

Example:
12, 34 // Decimal
0x5A, 0xB2 // Hexadecimal
0b10111001 // Binary digit

Chapter 5

96 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

5.4.2 Character Constant
‘character’

Character constants are denoted by a single character enclosed by single quotes.
ANSI C Escape Sequences as shown below are treated as a single character.

ANSI C Escape Sequence
Escape Character Meaning Hexadecimal

\0 Null 00
\a Bell (Alert) 07
\b Backspace 08
\f Form Feed 0C
\n New Line 0A
\r Carriage Return 0D
\t Horizontal Tab 09
\v Vertical Tab 0B
\\ Backslash 5C
\? Question Mark 3F
\’ Single Quote 27
\” Double Quote 22

Example:
‘a’, ‘b’,’c’, /x00

5.4.3 String Constant
“character_list”

String constants are series of characters enclosed in double quotes, and which
have an implied null value (‘\0’) after the last character.

NOTE
It takes one more character space for constant string to store the null value.

Example:
“Hello World”
“Elan Micro”

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 97

5.5 Data Type
The size and range (maximum and minimum values) of the basic data type are
as shown below.

Type Range Storage Size (Byte)
void N/A None
(unsigned) char 0 ~ 255 1
signed char –128 ~ 127 1
(signed) int -128 ~ 127 1
unsigned int 0 ~ 255 1
(signed) short –32768 ~ 32767 2
unsigned short 0 ~ 65535 2
(signed) long –2147483648 ~ 2147483647 4
unsigned long 0 ~ 4294967295 4
bit 0 ~ 1 1 (Bit)

float 1.175494351E-38F ~
3.402823466E+38F 3

double 1.175494351E-38F ~
3.402823466E+38F 3

NOTE
1. See Section 6.4 of Chapter 5 for more details on “Bit Data Type”.
2. If you use long, float, and double data type for multiplication, division, modulus, and

compare operations, the 0x20 ~ 0x24 (5 bytes) of Bank 0 are exclusively reserved for
compiler use. Therefore, do not assign these addresses to any variable when you
perform the above mentioned operations.

When an arithmetic operator, such as, “*”, “/”, and “%” is used with different
data types, conversion of right-aligned variables to left-aligned data type is done
before the operator takes effect. We suggest you use the same data type to
develop program.

Example:
Int I1, I2;
Short S1, S2, S3;
Long L1, L2;
I1 = 0x11;
I2 = 0x22;

S1 = I1 * I2; change to S1 = (short) I1 * (short) I2;
 // If forgot to add “(short)” before I1 and I2, the final

// result (in S1) will be 1 byte only

S1 = 0x1111;
S2 = 0x02;

L1 = S1 / S2; change to L1 = (long) S1 * (long) S2;
 // If forgot to add “(long)” before S1 and S2, the final

// result (in L1) will be 2 bytes only.

Chapter 5

98 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

Tiny C compiler uses two’s compliment to perform mathematical negative
signed declaration.

Example:
Assume abc is allocated at 0x20, Bank 1. Then from RAM Bank window you
will see E8 being displayed at that location.
int abc;

unsigned int uir;

abc=-0x18;

5.6 Enumeration
enum identifier
enum idenftifier {enumeration-list [=int_value]...}
enum {enumeration-list}

Enumeration defines a series of named integer constants. With the definition,
the integer constants are grouped together with a valid name. For each name
enumerated, you can specify a distinct value.

Example:
enum tagLedGroup {LedOff, LedOn} LEDStatus;

5.7 Structure and Union
struct (union)-type-name:
struct (union) identifier
struct (union) identifier {member-declaration-list}
struct (union) member-declaration-list
member-declaration-list:
member-declaration
member-declaration-list member-declaration
member-declaration:
member-declaration-specifiers declaration-list
member-declaration-specifiers:
member-declaration-specifier
member-declaration-specifiers member-declaration-specifier

The structure group related data and each data in the structure can be accessed
through a common name. Unions are groups of variables that share the same
memory space.

NOTE
 Do not use bit data type in structure and union. use bit field instead.
 Structure and union cannot be used in function parameter.

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 99

Example 1:
struct st
{
 unsigned int b0:1;
 unsigned int b1:1;
 unsigned int b2:1;
 unsigned int b3:1;
 unsigned int b4:1;
 unsigned int b5:1;
 unsigned int b6:1;
 unsigned int b7:1;
};
struct st R5@0x05: rpage 0; //struct R5 is related to 0x05,

 rpage 0

Example 2:
struct tagSpeechInfo{
 short rate;
 long size;
} SpeechInfo;

union tagTest{
 char Test[2];
 long RWport;
} Test;

5.8 Array
declarator:
 array-declarator:
array-declarator
 [constant-expression]
array-declarator [constant-expression]

An “Array” is a collection of same type data and can be accessed with the same
name.

NOTE
 If “const” is used to declare an array, the data will be placed at the program ROM.
 The maximum size of a constant array variable is 255 bytes.
 The maximum size of an array is 32 bytes (RAM bank).

Example:
int array1 [3] [10]
char port [4]
const int myarr [2] = {0x11, 0x22};
 // 0x11, 0x22 will be put at program rom

Chapter 5

100 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

5.9 Pointer
declarator
type-qualifier-list * declarator

A pointer is an index which holds the location of another data or a NULL
constant. All types of pointer occupy 1 byte.

NOTE

Function pointer is not supported.

Example:
int *pt;

5.10 Operators

5.10.1 Types of Supported Operators
The supported operators for the C expression are as follows:

 Arithmetic operators
 Increment and decrement operators
 Assignment operators
 Logical operators
 Bitwise operators
 Equality and relational operators
 Compound assignment operators

The table below shows the detailed description of each of the operators:

Arithmetic Operators

Symbol Function Expression
+ addition expr1 + expr2
– subtraction expr1 – expr2
* multiplication expr1 * expr2
/ division expr1 / expr2

% modulo expr1 % expr2

Arithmetic Operators

Symbol Function Expression
++ increase by 1 expr ++
-- decrease by 1 expr --

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 101

Arithmetic Operators

Symbol Function Expression
= equal expr1 = expr2

Arithmetic Operators

Symbol Function Expression
& bitwise AND expr1 & epxr2
| bitwise OR expr1 | expr2
~ bitwise NOT ~expr

>> right shift expr1 >> expr2
<< left shift expr1 << expr2
^ bitwise XOR expr1^expr2

Equality, Relational, and Logical Operators

Symbol Function Expression Example
< Less than expr < expr x < y
<= Less than or equal expr <= expr x <= y
> Greater than expr > expr x > y
>= Greater than or equal expr >= expr x >= y
== Equality expr == expr x == y
!= Inequality expr != expr x != y
&& Logic AND expr && expr x && y
|| Logic OR expr || expr x || y
! Logic NOT !expr !x

Compound Assignment Operators

Symbol Function Example
+= y=y + x x += y
-= y = y - x x -= y

<<= y = y << x y<<=x
>>= y= y >> x y>>=x
&= y= y & x y&=x
^= y= y ^ x y^=x
|= y= y | x y |= x

Chapter 5

5.10.2 Prefix of Operators
Priority Same Level Operators, from Left To Right
Highest () [] - > .

 ! ~ ++ -- -(unary) +(unary) (type_cast) *(indirection) & (address) sizeof

 * / %

 + -

 << >>

 < <= > >=

 == !=

 &

 ^

 |

 &&

 ||

 ?:

 = += -= *= /= %= >>= <<= &= |= ^=

Lowest ,

5.11 If-else Statement
if (expression) statement
else statement

“If” statement executes the block of codes associated with it when the evaluated
condition is true. It is optional to have an “else” block is executed when the
evaluated condition is false.

Example:
if (flag == 1)

{

 timeout=1;

 flag=0;

}

else

 timeout=0;

102 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 103

5.12 Switch Statement
switch (expression)
{
 case const-expr: statements
 case const-expr: statements
 default: statements
}

“Switch” statement is flexible to be set with multiple branches depending on a
single evaluated value.

NOTE
The expression will be checked as INT type, thus only 256 cases can be used in a
switch.

Example:
switch (I)
{
 case 0: function0();

break;
 case 1: function1();

break;
 case 2: function2();

break;
 default: funerror();
}

5.13 While Statement
while (expression) statement

“While” statement will first check the expression. If the expression is true, it
will then execute the statement.

Example:
while (value != 0)
{
 value--;
 count++;
}

Chapter 5

104 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

5.14 Do-while Statement
do
{
 statement
} while (expression);

“Do-while” will first execute the statement and then check the expression. If
the expression remains true, then it proceeds to the next statement until the
expression becomes FALSE.

Example:
do {

 value --;

 count++;

} while (value != 0);

5.15 For Statement
for (expr1; expr2; expr3) statement;

“For” statement is equivalent to the following statement:

expr1;

while (expr2)

{

 statement;

 expr3;

}

“expr1” is executed first. Normally “expr1” will be the initial condition.
“While” statement is executed in the same manner.

Example:
for (i = 0; i < 10; i++)

{

 value = value + i;

}

Chapter 5

EM78 Series IDE User’s Guide 8BC Fundamental Elements • 105

5.16 Break and Continue Statements
break;
continue;

The “break” statement exits from the innermost loop or switch block. The
“continue” statement on the other hand will skip the remaining part of the loop
and jump to the next iteration of the loop. “Continue” is useful in loop
statements but it cannot be used in switch loops.

Example:
break exampl see switch.

for (i = 0; i < 10; i++)

{

 flag = indata(port);

 if (flag == 0) continue;

 outdata(port);

}

5.17 Goto Statement
goto label;
 …
label: …

“goto” statement is used to jump to any place of a function. It is useful to skip
from a deep loop.

Example:
for (i = 0; i < 10; i++)

 for (j = 0; j < 100; j++)

 for (k = 0; k < 100; k++)

 {

 flag = crccheck(buffer);

 if (flag != 0) goto error;

 outbuf(buffer);

 }

error:

 //clear up buffer;

Chapter 5

106 • 8BC Fundamental Elements EM78 Series IDE User’s Guide

5.18 Function
“Function” is the basic block of the C language. It includes function prototype
and function definition.

5.18.1 Function Prototype
<return_type> < function_name> (<parameter_list>);

A “function prototype” should be declared before the function can be called. It
contains the return value, function name, and parameter types.

NOTE
 The total parameters passed to a function should be a fixed number. The compiler

does not support uncertain parameter_list.

 Recursive functions are not supported in the compiler.

 Do not use “struct” or “union” as parameter for function.

 Function pointer is not supported.

 Bit data type cannot be used as a return value.

 For reduced RAM bank wastage, it is suggest that you use global variable in
function, instead of using argument.

Example (Function Prototype):
unsigned char sum(unsigned char a,unsigned char b);
…

5.18.2 Function Definition
<return_type> < function_name> (<parameter_list>)
{
 statements
}

Example (Function Content):
unsigned char sum(unsigned char a,unsigned char b)
{

 return (a+b);

}

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 107

Chapter 6

C Control Hardware
Related Programming
6.1 Register Page (rpage)

<variable name> @<address>[: rpage <register page number >];

The data type is used to declare a variable at a certain register page. Users have
to declare clearly which register page (including rpage 0) the variable is
declared with.

NOTE

 When a variable is declared as “rpage,” it cannot be declared as “bank,” “iopage,”
or ”indir” at the same time.

 Only global variable can be declared as “rpage” data type.

 When an MCU has “rpage 0” only, <register page number> still needs to be assigned.

 Some MCUs use “register bank” instead of “register page” under special register.
When this condition occurs, keep on declaring in “rpage” just like in other cases.

 Usually common Registers 0x10~0x1F are reserve for C compiler. However, you may
use and declare a variable in 0x10~0x1F with “rpage 0” if C Compiler is not using the
registers. For example, you declare unsigned “int uiR16 @ 0x16: rpage 0”. It is okay
if C compiler is not using Register 0x16. But if C Compiler uses 0x16, it will report an
error and notifies you how many continuous common registers space are needed.

Example:
unsigned int myReg1 @0x03: rpage 0;

 // myReg1 is at address 0x03 of register page 0

 // Although the specific register only have one register

// page,the register page number cannot be ignored.

unsigned int myReg2 @0x05: rpage 1;

 // myTest is at address 0x05 of register page 1

 // If the specific register have more than one register

 // page, user should point out in which register page

 // the variable is located.

struct st

{

mailto:myReg1@0x03

Chapter 6

 unsigned int b0:1;

 unsigned int b1:1;

 unsigned int b2:1;

 unsigned int b3:1;

 unsigned int b4:1;

 unsigned int b5:1;

 unsigned int b6:1;

 unsigned int b7:1;

};

struct st myReg3@0x06: rpage 0;

CONT
R0(A, V)
R1/TCC

R2/PC
R3
R4

R5
R6
R7
R8
R9
RA
RB
RC
RD
RE
RF

myReg2 IOC5
IOC6
IOC7
IOC8
IOC9
IOCA
IOCB
IOCC
IOCD
IOCE
IOCF

rpage 0 rpage 1 ... iopage 0 ioage 1 ...

myReg3

myReg1

Declare variables in common registers 0x10~0x1F

Example:
unsigned int uiR12 @ 0x12: rpage 0; //declare uiR12 at common

register 0x12

unsigned int uiRDD @ 0x16: rpage 0;

unsigned int uiR17 @ 0x17: rpage 0;

unsigned int uiR18 @ 0x18: rpage 0;

unsigned int uiR19 @ 0x19: rpage 0;

unsigned int uiR1A @ 0x1A: rpage 0;

unsigned int uiR1B @ 0x1B: rpage 0;

unsigned int uiR1C @ 0x1C: rpage 0;

unsigned int uiR1D @ 0x1D: rpage 0;

108 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 109

6.2 I/O Control Page (iopage)
io <variable name> [@<address>[: iopage <io control page number>]];

Declare the variable at the register page position. You have to clearly declare at
which “iopage” the “io” variable is located, in spite of the fact that there is only
one “io” control page.

NOTE

 If a variable is declared as “iopage,” it cannot be declared as “bank,” ”rpage,” or ”IND”
at the same time.

 Only global variable can be declared as “iopage” data type.

 When an MCU has “iopage 0” only, <io control page number> still needs to be
assigned.

Example:
io unsigned int myIOC1 @0x05: iopage 0;

 // myIOC1 is at address 0x05 of io control page 0

io unsigned int myIOC2 @0x05: iopage 1;

 // myIOC2 is at address 0x05 of io control page 1

CONT
R0(A, V)
R1/TCC

R2/PC
R3
R4

R5
R6
R7
R8
R9
RA
RB
RC
RD
RE
RF

IOC5
IOC6
IOC7
IOC8
IOC9
IOCA
IOCB
IOCC
IOCD
IOCE
IOCF

rpage 0 rpage 1 ...
myIOC1 myIOC2
iopage 0 ioage 1 ...

Chapter 6

6.3 Ram Bank
<variable name> [@<address>[: bank <bank number>]];

Declare the variable at which RAM bank it is located. The <bank number > has
to be indicated, including the variable that is declared at Bank 0.

NOTE
 If a variable is declared as “bank,” it cannot be declared as “rpage,” ”iopage,” or ”indir”

at the same time.

 Only global variable can be declared as “bank” data type.

Example:
unsigned int myData1 @0x22: bank 0;

 // myData1 is at address 0x22 of ram bank 0

unsigned int myData2 @0x22: bank 1;

 // myData2 is at address 0x22 of ram bank 1

unsigned short myshort @0x20: bank 1;

 // myshort is at address 0x20 and 0x21 of ram bank 1

unsigned long myLong @0x24: bank 1;

 // myLong is at address 0x24~0x27 of ram bank 1

RAM Bank:

110 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

B0_2X
B0_3X

B1_2X
B1_3X myData2

myData1

myLong

0 1 2 3 4 5 6 7 8 9 A B C D E F

myshort

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 111

6.4 Bit Data Type
bit <variable name> [@<address> [@bitsequence] [: bank <bank number> / rpage
<page number>]];

Bit data type occupies only one bit.

NOTE
 Bit data type cannot be used in “struct” and “union.” It is recommended to use

“bitfield” instead, such as:
 union mybit {

 unsigned int b0:1
unsigned int b1:1
unsigned int b2:1
unsigned int b3:1
unsigned int b4:1
unsigned int b5:1
unsigned int b6:1
unsigned int b7:1

 };

 Bit data type cannot be used in function parameter.

 Bit data type cannot be used as a return value.

 Bit data type cannot be operated by arithmetic operator with other data type.

 Bit data type is not supported in the IO control register.

 Bit is a reserved word, so DO NOT use it as a name of “struct” or “union”.

 Only global variable can be declared as “bit” data type.

 You cannot assign location for Bit data in local field. Otherwise compilation error will
occur.

Example:
bit myBit1; // location of myBit1 is assigned

// by linker

bit myBit2 @0x03 :rpage 0;

 // if doesn’t declare bit

// sequence,the default location

// is at bit 0. Therefore myBit2

// is at bit 0 of 0x03 of rpage 0

bit myBit3 @0x04 @5: rpage 1; // myBit3 is at bit 5 of 0x04,

// rpage 1

bit myBit4 @0x05 @6: rpage 1; // myBit4 is at 0x05 bit 6 of

// rpage 1

bit myBit5 @0x22 @3: bank 1; // myBit5 is at 0x22 bit 3 of ram

// bank 1

Chapter 6

0x05

0x06

0x04

rpage 0 rpage 1......
......

.....
.7 0

0x03 myBit2 is at 0x03 bit 0

myBit4 is at 0x05 bit 6 of rpage 1

myBit3 is at 0x04 bit 5

RAM Bank:

B1_2X
B1_3X

4 50 1 2 3 ...

...

7 6 12345 0
myBit5 is at 0x22
bit 3 of RAM bank 1

6.5 Data/LCD RAM Indirect Addressing
indir <variable name> [@<address>[: ind <ind number>]];

Declare the variable at which indirect data RAM or LCD ram is located. The
<ind number > has to be indicated if address is assigned.
If the MCU has Data RAM, use “ind 0” (indirect RAM 0)
If the MCU has an LCD RAM, use “ind 1” (indirect RAM 1)

NOTE
 If the specified MCU does not support IND bank, the compiler will generate an

error message, e.g., “Symbol ‘WriteIND’ undefined”.

 Only global variable can be declared as “indir” data type.

 “Indir” data type does not support array or point variable.

Example:
indir int nData1; //default is “ind 0”, so nData1 is at Data Ram

indir int nData2 @0x30: ind 0;

 //nData2 is at Data Ram because “ind 0” is used

indir int nData3 @0x01: ind 1;

 //nData3 is at LCD Ram because “ind 1” is used

112 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 113

C0
C1
C2
C3
C4
C5
C6
C7

S0 S1 S2 S3 S4 S5 ...

...

LCD RAM:

myData2

Data RAM:

0x30

...

myData10x00

...

myData3

6.6 Allocating C Function to Program ROM
<return value> <function name>(<parameter list>) @<address> [: page <page
number>]
{
 ……
}

You can place C function at the dedicated address of the program ROM, and use
“page” instruction to allocate which page in the program ROM you wish to
assign.

NOTE
 Only C functions can be declared as “page.”
 Do not allocate the interrupt save procedure, nor the interrupt service routine at the

dedicated address of the program ROM.

Example:
void myFun1(int x, int y) @0x33

 // myFun1() is placed at 0x33 of ROM page 0 (default

// page)

{

 ……

}

void myFun2(int x, int y) @0x33: page 1

 //myFun2() is placed at 0x33 of ROM page 1

{

 ……

}

Chapter 6

Progrom ROM

myFun1()

myFun2()
0x433

0x033

(0x33 of page1)

(0x33 of page0)

Progrom ROM

myFun2()

myFun2()
0x0433

0x???? Function befor
allocation

Function after
allocation

(0x33 at page1)

6.7 Putting Data in ROM
const <variable name>;

Some data cannot be altered during program execution. Hence, you need to
store such data into the program ROM to save limited RAM space. The
Compiler uses the “TBL” instruction to incorporate such data into the program
ROM.

NOTE
 Use constant data type to store data into the ROM.

 Only global variable can be declared as “const” data type.

 The maximum size of a constant array variable is 255 bytes.

Example:
const int myData[] = {1, 2, 3, 4, 5};

const char myString[2][3] = {

 “Hi!”,

 “ABC”

};

114 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 115

RETL @0x02
RETL @0x03
RETL @0x04
RETL @0x05

TBL

Program ROM:

RETL @0x01

...
...

RETL @0x69
RETL @0x21
RETL @0x41

myData

myString

RETL @0x42
RETL @0x43

RETL @0x48

NOTE

If the specified MCU does not support TBL instruction, a page has only one ROM data
area (below 0x100). Otherwise a page has a maximum of two ROM data areas.

6.8 Inline Assembler
The compiler has an in line assembler which allows you to enhance the
functionality of your program.

6.8.1 Reserved Word
The reserved words for the inline assembler are:
_asm

{

 …… //write assembly code here

}

All the assembly instructions (in upper or lower case) of the EM78 series are
supported.

Chapter 6

116 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

NOTE
 You can declare variable in 0x10~0x1F when C Compiler is not using it. See Section

6.1, “Register Page (rpage)” for the details.

 If you have to switch “rpage,” “iopage,” or “bank” in the inline assembly, the original
“rpage,” “iopage,” or “bank” must be saved at the beginning and restored at the end of
the inline assembly program section. Refer to Example 1 in the next section (Section
6.8.2).

 If you use 0x10~0x1F in inline assembler, compiler will not report a warning or error
message, but it may encounter some other unexpected errors.

 You cannot use “_ASM” (upper case) to replace “_asm” (lower case).

 If you use register address, io control address, or RAM bank address directly,
compiler will not be able to recognize and differentiate between registers, io control,
or RAM during assembly. You have to change the page & bank registers (“bs 0x03, 7
bs 0x3, 6” in the Example 1 below).
Before changing the page & bank registers, you need to save the procedure (see top
section of the Example 1) and restore it at the end of the program (see bottom section
of the Example 1).

6.8.2 Use of C Variable in the Inline Assembly
The Compiler allows you to access the C variable in the inline assembly as
follows:
mov a, %<variable name> //move variable value to ACC
mov a, @%<variable name> //move address of variable to ACC

Example 1:
_asm
{
// Save procedure of rpage, iopage and bank register
 mov a,0x3
 mov %nbuf, a
 mov a, 0x04
 mov %nbuf+1, a
 bs 0x03, 7
 bs 0x03, 6 //Switch to other rpages
 ……
 //Restore procedure of rpage, iopage and bank
 mov a, % //register
 mov 0x03, a
 mov a, %nbuf + 1
 mov 0x04, a
}

NOTE
If R3 Bit 6, Bit 7 are not page selection bits, or R4 is not a RAM selection register, refer
and follow the procedure specified by the pertinent MCU Product Specification.

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 117

Example 2:
int temp;

temp=0x03; //assume temp is at 0x21 of bank 0

_asm {mov a, %temp} //move value 0x03 to ACC

_asm {mov a, @%temp} //move address 0x21 to ACC

Example 3:
unsigned int temp_a @0x20: bank 0;

unsigned int temp_s @0x21: bank 0;

#define status 0x03;

void main()

{

_ asm

 {

 mov %temp_a, a // mov 0x20, a

 mov a, status // mov a, 0x03

 mov %temp_s, a // mov 0x21, a

 }

}

6.9 Using Macro
You can use macro to control the MCU and shorten the program length.

NOTE
 Use “#define” to declare a macro.

 Use “\” to join more than one line assembly codes.

 Do not add any character after “\” (even a block character is not allowed). Otherwise,
an error will occur.

 Do not use constant as variable in macro. It will result to an error.

Example:
#define SetIO(portnum, var)_asm {mov a, @var} \
 _asm {iow portnum}

#define SetReg(reg, 3) _asm {mov a, @3} \
 _asm {iow portnum}

Macro “SetReg” will encounter error if constant is used as argument.

Chapter 6

118 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

6.10 Interrupt Routine
In TCC2, the following three factors have to be taken into account in handling
interrupts:

1) Interrupt Save Procedure: the procedure to save some registers before
executing a service routine. Many new MCUs are now designed to save the
important registers, like ACC, R3, R4, or R5 as interrupt occurs and restore
them before it quits interrupt service. Moreover, TCC2 C-Compiler under
eUIDE, can also saves and restore these registers. In case both MCU and
TCC2 do not provide the said registers, eUIDE will automatically supply
them when a new template file is added into the new project.

 An MCU provides more than one interrupt vectors. To determine which
interrupt is in use, you have to save the Register 0x2 (PC) to ACC. The
TCC2 will then use the PC value to determine which interrupt vector source
is being utilized.

2) Interrupt Service Routine: is the act taken to perform an interrupt. You
need not care how many interrupt vectors there are, You only need to write
the interrupts service code in the routine and switch “case” or “if else if” to
determine which interrupt vector source is needed.

3) Global Interrupt Vector Index variable (IntVecIdx): declare
“IntVecIdx” as global integer, e.g., “extern int IntVecIdx” and “IntVecIdx”
will occupy 0x10. Therefore, you cannot declare or use 0x10 anywhere in
project. If you try to use 0x10, the Compiler will not be able to warn you but
the program will run into wrong result.

6.10.1 Interrupt Save Procedure
void _intcall <function name>_l(void) @<interrupt vector address>: low_int <interrupt
vector number>

You have to write “MOV A,0x2” first in the inline assembly code (see Example
1 below).

6.10.2 Interrupt Service Routine
void _intcall <function name>(void) @int

The <interrupt vector number> is skipped in TCC2 interrupt service routine as
there is only one interrupt service routine function available.

The Example 1 below shows EM78P510N has more than one interrupt vectors.
With this MCU, you can write interrupt service routine code in each “case”
relative to interrupt vector. The “case” and interrupt save procedure that are not
going to be used, can be marked accordingly.

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 119

In Example 2, EM78569 is shown without employing 0x10 and declaring
“IntVecIdx” as the MCU has only a single interrupt vector. However, the
hardware is able to auto-save and restores registers (ACC, R3, & R5). The
TCC2 C-Compiler auto-saves R4.
In Example 3, with EM78567; you also cannot use 0x10 nor declare “IntVecIdx”
as the hardware has only a single interrupt vector. Moreover, the MCU cannot
auto-save nor restore register too.
You have to note that some MCUs require “reti” instruction in the first line to
tell compiler to restore inline assembly right after the “reti” line. Without “reti”,
the compiler will automatically restore inline assembly at the end of the
Interrupt Service Routine function. “reti” must be placed as the first order in
restoring inline assembly.

6.10.3 Reserved Common Registers Operation
Compiler saves the common registers (0x11~0x1F) which the Compiler uses.
Note the usage of “reti” instruction in restoring inline assembly in some MCUs
(see Example 3 below).

Example 1:
EM78P510N: This MCU saves and restores ACC, R3, and R5 during interrupt
execution. Note that this particular MCU has more than one interrupt vectors.
extern int IntVecIdx; //occupied 0x10:rpage 0
…
void _intcall AllInt(void) @ int
{
 switch(IntVecIdx)
 {
 case 0x4: //write interrupt vector 0x3 in this case
 break;

 case 0x7: //write interrupt vector 0x6 in this case
 break;

 case 0xA: //write interrupt vector 0x9 in this case
 break;

 case 0xD: //write interrupt vector 0xC in this case
 break;

 case 0x10: //write interrupt vector 0xF in this case
 break;

 case 0x13: //write interrupt vector 0x12 in this case
 break;

 case 0x16: //write interrupt vector 0x15 in this case
 break;

 case 0x19: //write interrupt vector 0x18 in this case

break;

Chapter 6

120 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

 case 0x1C: //write interrupt vector 0x1B in this case
 break;

 }
/* User also can use if-else if
 if(IntVecIdx==0x4)
{
}else if(IntVecIdx==0x7)
{
} else if(IntVecIdx==0xA)
{
} else if(IntVecIdx==0xD)
{
} else if(IntVecIdx==0x10)
{
} else if(IntVecIdx==0x13)
{
} else if(IntVecIdx==0x16)
…

*/
}

void _intcall TCC_l(void) @ 0x03:low_int 0
{
 _asm{MOV A,0x2}; //using LJMP to interrupt service procedure
}
void _intcall ExtInt_l(void) @ 0x06:low_int 1
{
 _asm{MOV A,0x2};
}
void _intcall WatchTime_l(void) @ 0x09:low_int 2
{
 _asm{MOV A,0x2};
}
void _intcall Time1_l(void) @ 0x0C:low_int 3
{
 _asm{MOV A,0x2};
}
void _intcall Time2_l(void) @ 0x0F:low_int 4
{
 _asm{MOV A,0x2};
}
void _intcall ADC_l(void) @ 0x12:low_int 5
{
 _asm{MOV A,0x2};
}
void _intcall UART_l(void) @ 0x15:low_int 6
{
 _asm{MOV A,0x2};
}
void _intcall SPI_l(void) @ 0x18:low_int 7
{
 _asm{MOV A,0x2};
}
void _intcall LVD_l(void) @ 0x1B:low_int 8
{
 _asm{MOV A,0x2};
}

Chapter 6

EM78 Series IDE User’s Guide 10BC Control Hardware Related Programming • 121

Example 2:
EM78569: Note that this particular MCU has only one interrupt vector. This
MCU saves and restores ACC, R3, and R5 during interrupt execution. eUIDE
will tell Compiler to save and restore R4.
void main()
{
 _asm{MOV A,@0x10 //enable bit 4 ,CONT
 CONTW
 }
}
void _intcall interrupt(void) @ int
{
 // Write your code (inline assembly or C) here
}
void _intcall interrupt_l(void) @ 0x08:low_int 0
{
 _asm{PAGE @0x0} //it’s dangerous to skip this line.
}

Example 3:
EM78567: This particular MCU has only one interrupt vector. The hardware
does not save nor restore any register and Compiler just can save and restore R3
and R4.
void _intcall interrupt(void) @ int
{

 // Write your code (inline assembly or C) here

 //restore ACC and R5

 _asm {

 reti //tell compiler to recover common registers here

 SWAPA 0X1E

 MOV 0X5,A

 SWAP 0X1F

 SWAPA 0X1F
 }
}

void _intcall interrupt_l(void) @ 0x08:low_int 0

{

 //save ACC and R5

 _asm {

 MOV 0X1F,A

 SWAPA 0X5

 MOV 0X1E,A

 PAGE @0X0
 }

Chapter 6

122 • 10BC Control Hardware Related Programming EM78 Series IDE User’s Guide

Chapter 7

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler • 123

Chapter 7

Quick Workout on Tiny
C Compiler
7.1 Introduction

This chapter introduces you to a quick way of understanding and controlling C
Compiler. Execute eUIDE by double clicking the eUIDE icon.

7.2 Create a New Project

Figure 7-1a eUIDE Menu Bar

From Menu Bar, click File
New or Project New to call the
New dialog (Figure 7-1c). Then
from the New dialog (Figure 7-1c
below), click on the Project tab to
select target MCU, assign project
filename and folder. Then click
the “C” Option Button for C
Compiler Project Type. Click OK
button to create the project.

Figure 7-1b File & Project Drop Down Menus

Assign a project
filename (no suffix
required)

Locate the folder to
store the new project

Click the “C” Option for
C Compiler Project In this particular case,

EM78P468N is
selected as target MCU

Figure 7-1c New Dialog

Chapter 7

NOTE

 Do not type any filename suffix. eUIDE will auto-add append “cpj” as suffix for the C
Compiler project filename.

 See Section 3.4.2 for more details).

Observe the new project is then created with the defined project name and
micro- controller you have selected, displayed at the top of the Project window.

Target
Microcontroller

Project Filename
(“cpj” auto-appended
for C mode)

Figure 7-1d Project Window Showing Target MCU & Project Filename

7.3 Add a New “C” File to the Project
To add a new “C” file to the project, open New dialog (New or Project New)
This time, the New dialog will appear with Create a New File tab automatically
selected (Figure 7-2 below). eUIDE will auto-provide a template with the basic
Tiny C Compiler main() file, interrupt save procedure, and interrupt service
routine functions (see Section 7.5 below for details) when the Source File (*.c)
is selected in the left list box and the Empty File checkbox is disabled.

The Add new file to project checkbox is enabled by default. Now enter a
filename for the first new file to be added into the File Name text box (no suffix
required as eUIDE will append proper suffix automatically). Press OK button
to add the first “C” file into the project.

Select Source File (*.c)

Do not enable Empty
File checkbox

New “C” file filename
(Suffix “c” will auto-append)

Figure 7-2 Adding the First New “C” File with Main(), Interrupt Save Procedure,
and Service Routine Frame Functions

124 • Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

Chapter 7

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler • 125

7.4 Add a Second File or a New Header File to the
Project

To add a new second “C” file to the project, call New dialog again. This time
you have to enable the Empty File checkbox in the Create a New file tab.

Figure 7-3a Adding a New Second File or Head File to the Project

Enter a filename (without suffix) and click OK button. The eUIDE will create a
new and empty “C” file (or Header file if Header File (*.h) is selected in the left
list box as show in the figure above).

NOTE
if Header File (*.h) is selected in the left list box, an empty Header file will be created
and added into the project regardless of whether the Empty File checkbox is selected
or not.

The following shows an example of a project template with a number of “C”
files and one header file.

Figure 7-3b An Example of a Created Project Template with Two “C” Files and One Header File

Enable Empty File
checkbox if Source File

(*.c) is selected,
otherwise, don’t care.

Chapter 7

126 • Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

7.5 The Main(), Interrupt Save, and Service Routine
Functions

The following Figure 7-4 shows part of the service routine. Only one main()
function can exist in a “C” mode project.

Usually, you do not need to modify the saved and restored R4, R3, ACC, or R5
registers in the file that eUIDE supplies. However, for precautionary reason, it
is recommended that you check whether the saved or restored locations are at
the same ram bank. In this particular example case, MCU EM78P468N
hardware saves the ACC and R3 registers before executing the interrupt service
routine and restores them when the interrupt service routine is completed.
(Refer to EM78P468 8-Bit Microcontroller Product Specification). So, R4
need to be saved and restored by eUIDE C compiler. Inline assembly is used to
perform save and restore processes (refer to Section 6.8, Inline Assembler).
Saving and restoring of ACC, R3, R4, or R5 means saving and restoring the
MCU hardware.

In addition to saving and restoring MCU hardware, in some cases you also need
to save and restore “C” system. Some calculations outside interrupt service
routine in C Compiler do not only use ACC, the declared register, or ram. They
also use some of the common registers 0x10~0x1F as well. The interrupt
service routine also uses these common registers. You need to confirm that
these common registers’ value are the same before running them into interrupt
save procedure and leaving interrupt service routine. That is to say, you have to
be sure to save and restore these common registers correctly. The C Compiler
will display its compiling result in the Output window.

Suppose the 0x10~0x14 common registers in the following example have to be
saved and restored, apply remarks into these two backup “C” systems. You can
restore the “C” system inline assembler code (by removing the remarks) if
needed. If the C Compiler needs more common registers to save and restore
over and above 0x10~0x14, you only need to add codes, e.g., MOV A, 0x15 and
MOV 0x37+1, A; after saving 0x14 in the backed-up “C” system inline
assembler. Likewise, add MOV A, 0x37+1 and MOV 0x15, A after restoring
0x14 in restore “C” system inline assembler.

You can write interrupt service code between backup “C” systems and restore
“C” system, e.g., //Write your code (inline assembly or C) here as shown in the
following example.

Chapter 7

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler • 127

Figure 7-4 eUIDE Provides C Main & Interrupt Frame (template)

7.6 Project Development with Interrupt
The following example shows how to write “C” code in your product
development. In the example, the MCU in awaken by Port 6 with Counter 1
underflow interrupt with interrupt vector 0xC. So, you need to write some
initial codes and your interrupt service code as shown Figures 7-5a & 7-5b.
Then activate one of “C” files and use Alt+F7 to compile the file to see if errors
exist in the file. The Alt+F7 will merely compile the active file. During
development, use Alt+F7 to compile the “C” files one by one to save
compilation time. After no-error status is verified in all “C” files in the project,
use Rebuild All (Alt+F9) command to compile and link the object code, then
create execution file (cds). If Rebuild All is successfully executed, C Compiler
will report many important and useful messages in the Information tab of the
Output window (Figure 7-5c below).

Chapter 7

Figure 7-5a Writing Initial Code

 Figure 7-5b Writing Interrupt Service Code in

 Counter 1 Interrupt

Write interrupt service
 code here

128 • Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

Program ROM
usage status

RAM data
usage status

Register or RAM
usage data type

IO Control usage status
Register usage status

“0x10” need to be saved & restored

Function List vs.
Call relation

Call Depth

Figure 7-5c Output Window Information Messages after Successful Rebuild All Execution

Chapter 7

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler • 129

7.7 Tips on C Compiler Debugging
7.7.1 Speed up Debugging
In C mode environment, you can
increase the speed of step by step
debugging (with Step Into (F7) and
Step Over (F8) commands) by selecting
the Speed Up Debug checkbox from
the Tool menu (figure at right).

Note that this function is disabled when
debugging in Assembly mode.

Figure 7-6 Speed Up Debug Command

7.7.2 View Corresponding Assembly Code in C
Environment

With the Assembly Code checkbox of
View menu (figure at right) enabled, the
C source code and its corresponding
assembly codes can be fully displayed
together in the Edit window (see next
Figure 7-7b).

Debugging can be carried out by
focusing on either C or assembly code.

Figure 7-7a Press Assembly Code Button in
View

Chapter 7

Figure 7-7b Assembly Code in C Debug Mode with C File in Focus

You can activate and set focus C or assembly file to start debugging with such
commands as Go, Free Run, Reset, Step Into, Step Over, Step Out,
Go to Cursor, and setting/clearing breakpoints.

7.7.3 Viewing Defined Variables in Register Window
When the Show defined label in Register Window checkbox of View Setting
dialog (Option View Setting) is enabled, the variables defined in register
field will display in the Register window after dumping. Note that the register
names do not appear by default, but are users defined.

Figure 7-8 Register Window Showing Defined Variables

130 • Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

Chapter 7

EM78 Series IDE User’s Guide Quick Workout on Tiny C Compiler • 131

7.7.4 Reducing Codes Size in Some Cases
The defined signed variables and unsigned variables are not the same. Using
unsigned variable in some particular cases could help in reducing program code
size.

Chapter 7

132 • Quick Workout on Tiny C Compiler EM78 Series IDE User’s Guide

Appendix A

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages • 133

Appendix A

Assembly Error/
Warning Messages
A.1 Introduction

Error messages which are displayed in the Build tab of Output window are
categorized into 4 classes, i.e., Class M, Class A, Class L, and Class D. Where:
Class M error message pops out when the main program is executed

incorrectly.
Class A error message appears on the list when syntax is in errors, e.g., error

occurs during assembling.
Class L error message shows up on the list if a linking errors occurs during a

project Build or Rebuild All command execution.
Class D error message describes the errors of debugging program.

A.2 Class M: Main Program Errors Messages
1. “error M001: Number of opened Editor windows exceeds limit.”

Reason: Number of opened Editor windows have reached maximum
limit. Opening a new one is prohibited.

Solution: Close some of the opened files.

2. “error M002: Memory not enough to accommodate Editor Window.”
Reason: Remaining system memory size inadequate to meet Editor

window requirement.
Solution: Close opened files or application programs that are idle.

3. “error M003: File: [filename] already existed.”
Reason: The filename has already been created and cannot be created

again.
Solution: Rename and save again.

4. "error M004: File: [filename] cannot be created."
Reason: The application is notified that the file cannot be created by O.S.
Solution: Check whether the disk is full or whether the system is stable or

otherwise.

Appendix A

134 • 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

5. "error M005: A project is currently opened."
Reason: Only one opened project is allowed at a time by eUIDE.
Solution: Close the existing project before opening another one.

6. "error M006: Project: [filename] cannot be created."
Reason: The application is notified that the project cannot be created by

O.S.
Solution: Check whether the project is empty or not.

7. "error M007: The file: [filename] already existed in the project."
Reason: The file has been included in the project.
Solution: Stop trying to add the file into the project.

8. "error M008: File: [filename] cannot be saved."
Reason: The file cannot be saved in the disk.
Solution: Check whether the project is empty or not.

9. "error M009: The project: [filename] does not conform with ELAN
project file format."

Reason: The project content is not of ELAN project format.
Solution: Create a new project file.

10. "error M010: The file: [filename] does not exist."
Reason: The file cannot be found in the directory.
Solution: Check whether the file exists or not.

11. "error M011: The file: [filename] cannot be opened."
Reason: The file cannot be opened by O.S.
Solution: Check whether the file actually exists or not.

12. "error M012: The file: [filename] size is over [number]k of the max
limit of [number]k."

Reason: The file size is over the maximum size of buffer with which the
Editor window is allocated.

Solution: Partition the file into two or more segments.

13. "error M013: The copy size: [number], exceeds by [number]k over the
max size of [number]k."

Reason: The copy size exceeds the maximum size of the copy buffer.
Solution: Decrease the segment size of the copy content.

14. "error M014: Memory cannot be allocated."
Reason: System cannot allocate more memory for further use.
Solution: Close Editor windows or application programs that are idle.

Appendix A

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages • 135

15. "error M015: Line is over 250 characters."
Reason: The Editor window can only accommodate a maximum of 250

characters per line.
Solution: Split the long line into two or more lines.

16. "error M016: Active file [filename] has a wrong extension name,
not .dt or .asm."

Reason: Active file filename extension must be “.dt” or “.asm”.
Solution: Change file with proper filename extension “.dt” or “.asm”.

17. "error M017: File to be assembled, not found."
Reason: Cannot find the file to be assembled.
Solution: Select and provide a file to be assembled.

18. "error M018: Project file must be created."
Reason: No project is available.
Solution: Open or create a project.

19. "error M019: Number of opened Editor windows exceeds limit.”
Reason: Number of opened Editor windows have reached maximum

limit. Opening a new one is prohibited.
Solution: Close some of the opened files.

20. "error M020: No active Editor window."
Reason: The Editor window is not currently selected.
Solution: Select Editor window.

21. "error M021: Text field must be input with characters."
Reason: The text field cannot be empty.
Solution: Input characters.

A.3 Class A: Assembler Errors/Warnings Messages
1. "error A001: Cannot find the [filename] file."

Reason: The file cannot be found in the directory.
Solution: Check whether the file actually exists in the directory.

2. "error A002: Main and subroutine programs cannot define the [label
name] local label."

Reason: The local label (preceded by a dollar sign “$”) cannot be defined
in the main and subroutine programs.

Solution: Remove the local label from the main or subroutine program.

Appendix A

136 • 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

3. "error A003: The syntax format should be: operation
[operand][,operand]."

Reason: The syntax format of the statements did not follow the
“operation [operand][,operand]” format.

Solution: Correct the syntax error by abiding to the proper format.

4. "error A004: The label [label name] has already been defined."
Reason: Each label must be unique and cannot be defined more than

once.
Solution: Redefine with another label name.

5. "error A005: The EQU syntax is: label EQU operand."
Reason: The EQU syntax is in error.
Solution: Correct error with the proper syntax.

6. "error A006: The INCLUDE nest depth is over 256."
Reason: The maximum depth for using “INCLUDE” is 256.
Solution: Reduce the depth of “INCLUDE”.

7. "error A007: The IF conditional expression is in error."
Reason: The expression of “IF conditional” is in error.
Solution: To correct the expression of “IF conditional”.

8. "error A008: Attempt is made to divide by zero."
Reason: The expression where number is divided by zero is invalid.
Solution: Modify the expression.

9. "error A009: The assembler does not support floating point number."
Reason: Expression with floating point number is not supported.
Solution: Change the floating point into integer number.

10. "error A010: The symbol [symbol name] is not defined."
Reason: The symbol is not defined.
Solution: Provide the required symbol definition.

11. "error A011: The macro name [macro name] has already been
defined."

Reason: Each macro name must be unique and cannot be defined more
than once.

Solution: Redefine with another macro name.

Appendix A

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages • 137

12. "error A012: The parameter name [parameter name] is identical with
label."

Reason: The parameter name and label must be unique to each other.
Solution: Redefine the parameter name.

13. "error A013: The same parameter name [parameter name] appears
twice."

Reason: Each parameter name in the macro definition must be unique and
cannot be defined more than once.

Solution: Redefine the redundant parameter name.

14. "error A014: The number of actual parameter does not match with
formal parameter."

Reason: The number of actual parameter and the number of formal
parameter does not match.

Solution: Change the actual or formal parameter number to make them
match with each other.

15. "error A015: The parameter number [number] does not exist."
Reason: The position of actual parameter is not defined.
Solution: Define the actual position number of the actual parameter.

16. "error A016: The external symbol [symbol name] has identical name
with the defined label."

Reason: The external symbol name and label must be unique to each other
Solution: Redefine the internal defined label.

17. "error A017: Address of ORG is in error."
Reason: The defined ORG address is in error.
Solution: Redefine the ORG with proper address.

18. "error A018: MACEXIT cannot be set outside macro."
Reason: The “MACEXIT” instruction cannot be set outside the macro

definition.
Solution: Remove the “MACEXIT” instruction.

19. "error A019: Parameter must be a string variable."
Reason: The formal parameter must be defined as string.
Solution: Change the formal parameter to string.

20. "error A020: Memory cannot be allocated."
Reason: O.S. cannot allocate extra memory.
Solution: Close opened Editor windows or applications that are currently

redundant.

Appendix A

138 • 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

21. "error A021: The source statements exceed by [number] lines."
Reason: The line number of source file is over the system default limit.
Solution: Split the program into two or more small programs.

22. "error A022: The tree is in error because of parsing error."
Reason: The program syntax line is in error.
Solution: Rewrite the program line.

23. "error A023: [allocated memory type] memory is faulty when memory
is allocated."

Reason: O.S. cannot allocate extra memory.
Solution: Close active Editor windows or applications that are currently

redundant.

24. "error A024: Assembler variable setting must be an integer value."
Reason: The result of expression in the right side of “SET” instruction must

be an integer.
Solution: Change the expression.

25. "error A025: ORG address must be an integer value."
Reason: The address of ORG must be an integer.
Solution: Rewrite the address expression of “ORG” instruction.

26. "error A026: The PC [number] address is over the [number] ROM
size."

Reason: The program counter address exceeds the program ROM size.
Solution: Check program for error.

27. "error A027: The assembler exceeds max. pass [number]."
Reason: The assembler pass is over the maximum default pass.
Solution: Check the assembler for error.

28. "error A028: The operand [number] value does not include the valid
data."

Reason: The operand value is invalid.
Solution: Change the operand value.

29. "error A029: The [number] address is in conflict."
Reason: The program address is in conflict with another address.
Solution: From Menu Bar, click Edit Find to find the other conflicting

address in the list file; then update the address of the program
position.

Appendix A

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages • 139

30. "error A030: The file [filename] cannot be opened."
Reason: The file cannot be opened.
Solution: Check whether the file actually exists or misplaced.

31. "error A031: The file configuration read error."
Reason: The format of the configuration file is not correct.
Solution: Setup eUIDE software again.

32. "error A032: The file [filename] cannot be opened."
Reason: The file cannot be opened.
Solution: Check whether the file actually exists or misplaced.

33. "error A033: The macro is not defined."
Reason: The macro name is not defined.
Solution: Define a new macro or change a macro name.

34. "error A034: The expression cannot be calculated."
Reason: The format of the expression is in error.
Solution: Modify expression to correct the format.

35. "error A035: The operation [operation name] is not defined."
Reason: The operation is not defined by eUIDE.
Solution: Check the eUIDE user menu.

36. "error A036: The PUBLIC or EXTERN label [label name] must be
address label."

Reason: The label defined by “PUBLIC” or “EXTERN” instruction is
not an address label as required.

Solution: Remove the “PUBLIC” or “EXTERN” instruction.

37. "error A037: The operand value cannot be calculated."
Reason: The operand expression format is not correct.
Solution: Correct the operand expression.

38. "error A038: The symbol [symbol name] is not extern symbol."
Reason: The symbol is not defined as internal or external as required.
Solution: Redefine the symbol accordingly.

39. "error A039: The reference number is over the [number] limit."
Reason: The reference number in the “PUBLIC” or “EXTERN”

instruction is over maximum limit.
Solution: Partition the instruction into two or more lines.

Appendix A

140 • 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

40. "error A040: The length of filename [filename] exceeds 256."
Reason: The filename length of over 256.
Solution: Revise the filename or directory.

41. "Warning A050: The symbol length exceeds 32."
Reason: The length of the variable is over 32.
Solution: Change the variable length to within limit.

42. "Warning A051: The number of messages is over 500"
Reason: The number of messages exceeds 500.
Solution: Decrease the number of the messages to within 500.

43. "Warning A052: Use the [number] to express [number]"
Reason: Transform the negative number to hexadecimal.

44. "Warning A053: The target address of “lcall” or “ljmp” instruction is
not over page ([number K])"

Reason: The target address and “call” or “jmp” instruction is located in
the same page.

45. "Warning A054: [label name] :unreferenced variable."
Reason: The variable not applicable with the project.

A.4 Class L: Linker Error Messages
1. "error L001: Memory of [stack type] stack overflows."

Reason: O.S. cannot allocate extra memory.
Solution: Close idle Editor window, or close inactive application.

2. "error L002: The file [filename] cannot be found."
Reason: The file cannot be found.
Solution: Check whether the file actually exists or missing.

3. "error L003: The Object file format does not conform to ELAN object
file format."

Reason: The object file format does not agree with ELAN object file
format.

Solution: Reassemble the source file.

4. "error L004: Symbol [symbol name] is not defined."
Reason: The symbol is not defined.
Solution: Define the symbol.

Appendix A

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages • 141

5. "error L005: Public symbol [symbol name] is in conflict."
Reason: The public symbol is defined more than once.
Solution: Redefine the public symbol.

6. "error L006: ROM address [number] is in conflict."
Reason: The program address is in conflict with another address.
Solution: From Menu Bar, click Edit Find to find the other conflicting

address in the list file; then update the address of the program
position.

7. "error L007: The file [filename] cannot be created."
Reason: The file cannot be created.
Solution: Check whether the disk is full or whether the system is unstable.

8. "error L008: Line [number]: The machine address [number] exceeds
ROM size [number]."

Reason: The program address size exceeds the ROM size.
Solution: Decrease the program code size.

9. "error L009: No project file is active."
Reason: No project is opened.
Solution: Open or create a project.

10. "error L010: No Output window is found."
Reason: Output window is not opened.
Solution: Click View Output to display the Output window.

11. “Warning L020: The target address has no code.
Reason: The target address of jump instruction has no code.

A.5 Class D: Debugger Error Messages
1. "error D001: The ICE memory is in error ."

Reason: The ICE SRAM is in error.
Solution: Change the ICE SRAM.

2. "error D002: CDS size = [number] does not match with ROM size =
[number]."

Reason: The CDS size is not the same as the ROM size.
Solution: Check the project target microcontroller type to see whether it is

the same type as the eUICE system defined microcontroller.

Appendix A

142 • 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

3. "error D003: The project MCU type [type name] does not match with
[ICE name] ICE."

Reason: The project target MCU is not compatible with the eUICE
system development tool MCU

Solution: Create a new project or change to compatible ICE.

4. "error D004: A line from the file does not convert to machine
address."

Reason: The program line failed to assemble.
Solution: Check the syntax of the program line for error.

5. "error D005: The breakpoint group number is over 64."
Reason: The breakpoint group number is over 64.
Solution: Remove the extra breakpoint groups.

6. "error D006: The ICE is not properly connected to PC."
Reason: Interface between ICE and PC failed.
Solution: Check power supply, ICE crystal, printer port/USB connection,

etc.

7. "error D007: The printer/USB port is not connected."
Reason: The printer/USB port is not connected.
Solution: Check power supply, printer/USB port connection, etc.

8. "error D008: The number is invalid."
Reason: The number is invalid.
Solution: Rewrite the number expression.

9. "error D009: The number of messages is over [number]."
Reason: The number of messages is over the Output window capacity.
Solution: Decrease the number of defined messages, such as

“MESSAGE” instructions.

10. "Warning D010: The address [number] does not match with the
source file."

Reason: The program address does not match with the source file line.
Solution: Add the program source of the address, or check whether the

crystal is normal or not.

11. "Warning D011: Memory checked is in error."
Reason: The ICE SRAM memory is in error.
Solution: Change the ICE SRAM, or check whether the crystal is normal

or not.

Appendix A

EM78 Series IDE User’s Guide 14BAssembly Error/ Warning Messages • 143

12. "error D012: Syntax error."
Reason: The source file syntax has a severe error.
Solution: Correct the source file.

13. "error D013: Memory address [number] is in error !"
Reason: The address of ICE SRAM is in error.
Solution: Change the ICE memory.

14. "error D014: Cannot find the breakpoint address of [program line]."
Reason: The breakpoint line does not have program address.
Solution: Redefine the breakpoint.

15. "error D015: The number of symbols is over [number]."
Reason: The defined number of symbols exceeds limit.
Solution: Partition the program into two or more small programs

16. "error D016: Dump program before adding label to watch."
Reason: Program has to be dumped first before adding label to watch.
Solution: Dump program to ICE, then add label to watch.

17. "error D017: Trace log is empty."
Reason: No data found during Trace Log (F2) operation.
Solution: Stop executing the Trace Log operation.

18. "error D018: No trace item in trace log."
Reason: No data found during Trace Log (F2) operation.
Solution: Stop executing the Trace Log operation.

19. "error D019: Stack overflow. The stack number [number] exceeds the
max number [number]."

Reason: The stack went over the hardware design capacity.
Solution: Decrease the number of calls.

20. "error D020: The file: [filename] does not exist. "
Reason: The file cannot be found in the directory.
Solution: Check whether the file exists or not.

21. "Warning D021: External Memory is in error."
Reason: The external ICE SRAM memory is in error.
Solution: Change the external ICE SRAM, or check whether the crystal is

normal or not.

Appendix A

144 • 14BAssembly Error/ Warning Messages EM78 Series IDE User’s Guide

22. "error D022: File [filename] was modified by user.
Can't read anymore. Please "Rebuild All."

Reason: The file has been modified.
Solution: Execute "Rebuild All" command.

23. "error D023: File [filename] does not exist.
Execute “Rebuild All” to generate the file."

Reason: The file cannot be found in the directory.
Solution: Execute "Rebuild All" command.

24. "error D024: No file exists in [filename] project."
Reason: The project is empty.
Solution: Add file into project.

Appendix B

EM78 Series IDE User’s Guide 16BC Conversion Table • 145

Appendix B
C Conversion Table
B-1 Conversion between C and Assembly Codes

The assembly code was generated by the eUIDE.

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

intVar1 = 0xFF; MOV A, @0xFF
MOV %intVar1, A

100% (2 / 2 * 100) Integer Variable

intVar2 = intVar1; MOV A, %intVar1
MOV %intVar2, A

100% (2 / 2 * 100)

charVar1 = 0xFF; MOV A, @0xff
MOV %charVar1, A

100% (2 / 2 * 100) Character Variable

charVar2 = intVar1; MOV A, %charVar1
MOV %charVar2, A

100% (2 / 2 * 100)

shortVar1 = 0x1234; MOV A, @0x34
MOV %shortVar1, A
MOV a, @0x12
MOV %shortVar1+1, A

100% (4 / 4 * 100) Short Variable

shortVar2 = shortVar1; MOV A, %shortVar1
MOV %shortVar2, A
MOV A, %shortVar1+1
MOV %shortVar2+1, A

100% (4 / 4 * 100)

longVar1 = 0x123456; MOV A, @0x56
MOV %longVar1, A
MOV A, @0x34
MOV %longVar1+1, A
MOV A, @0x12
MOV %longVar1+2, A

100% (6 / 6 * 100) Long Variable

longVar2 = longVar1 MOV A, %longVar1
MOV %longVar2, A
MOV A, %longVar1+1
MOV %longVar2+1, A
MOV A, %longVar1+2
MOV %longVar2+2, A

100% (6 / 6 * 100)

Appendix B

146 • 16BC Conversion Table EM78 Series IDE User’s Guide

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

For loop for (i = 0; i < 5; i++)
{

……
}

CLR %i
JMP L2

L1:
……

L2:
INC %i
MOV A, @0x05
SUB A, 0x14
JBS 0x03, 0
JMP L1

100% (7 / 7 * 100)

While statement while (cnt != 1)
{

……
}

L1:
…

MOV A, %cnt
XOR A, @0X01
JBS 0X03,2
JMP L1

100% (4 / 4 * 100)

Do-while statement do
{

……
} while (cnt != 1);

L1:
……
MOV A, %cnt
MOV A, @0x01
XOR A, @0x01
JBS 0x03, 2
JMP L1

100% (4 / 4 * 100)

Do-while statement do
{
 Var_c2++;
}while(-- var_c1);

L1:
INC %var_c2;
DJZ %var_c1;
JMP L1

100%(3/3*100)

If-else statement unsigned int cnt;
if (cnt == 0)
{

……
}
else if (cnt < 5)
{

……
}
else
{

……
}

MOV A, %cnt
JBS 0x03, 2
JMP L1
……
JMP ENDIF

L1:
MOV A,@0X05
SUB A, %cnt
JBC 0x03, 0
JMP ENDIF
……
JMP L2

L2:
……

ENDIF:

100% (10 / 10 * 100)

Appendix B

EM78 Series IDE User’s Guide 16BC Conversion Table • 147

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

Switch statement unsigned int cnt;
switch(cnt)
{

case 1:
……
break;
case 2:
……
break;
case 3:
……
break;
default:
……
break;

}

MOV A,%cnt
MOV 0X14,A
MOV A,0X14
XOR A,@0x01
JBC 0X03,2
JMP case 2

 MOV A,0X14
 XOR A,@0X02
 JBC 0X03,2
 JMP case 2
 MOV A,0X14
 XOR A,@0X3
 JBC 0X03,2
 JMP case 3
 JMP default

Case 1:
JMP …ENDSWITCH
Case 2:
JMP ENDSWITCH
Case 3:
 JMP ENDSWITCH
Case 4:
 default

ENDSWITCH

106% (18 / 17 * 100)

Function main()
{

int i;
i = fun(3);

return;

}

int fun(int in)
{

return in+1;
}

; using EM78806B
MOV A, @0x03
BANK @0
MOV %in, A
CALL FUN
MOV A, 0x10
BANK @0
MOV %i, A
RET

FUN:
MOV A, 0x14
BANK @0
MOV %temp1, A
MOV A,%in
MOV 0x14,A
MOV 0X10,A
MOV A,@0X01
ADD 0X10, A
MOV A,%temp1
MOV 0X14,A
RET

136% (19 / 14 * 100)

Appendix B

148 • 16BC Conversion Table EM78 Series IDE User’s Guide

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

Const array const int myConst[5] =
{1, 2, 3, 4, 5};

main()
{

int i;

i = myConst[3];

return;

}

; using EM78569

MOV A, @0x3D
MOV 0x19, A
MOV A, @0x1F
MOV 0x1A, A
PAGE @0x0F
CALL 0x280
PAGE @0x00
BC 0x04, 6
BC 0x04, 7
MOV 0x20, A
…
BC 0X03,0
RLCA 0x1A
TBL
…
PAGE @0x0F
JMP 0x2FE
MOV A, 0x19
TBL
….

RETL @0x01
RETL @0x02
RETL @0x03
RETL @0x04
RETL @0x05

162% (21 / 13 * 100)

Register page unsigned int myR5P0
@0x05: rpage 0;
unsigned int myR5P1
@0x05: rpage 1;
unsigned int myR5P2
@0x05: rpage 2;

myR5P0 = 0x12;
myR5P1 = 0x34;
myR5P2 = 0x56;

; using EM78P468N
MOV A, @0x12
BS 0X03,6
MOV 0x05, A

MOV A, @0x34
BS 0x03, 6
BC 0x03, 7
MOV 0x05, A

MOV A, @0x56
BC 0x03, 6
BS 0x03, 7
MOV 0x05, A

100% (11 / 11 * 100)

Appendix B

EM78 Series IDE User’s Guide 16BC Conversion Table • 149

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

I/O control page io unsigned int myIO6P0
@0x06: rpage 0;
io unsigned int myIO6P1
@0x06: rpage 1;
io unsigned int myIO7P1
@0x07: rpage 1;

myIO6P0 = 0x00;
myIO6P1 = 0xFF;
myIO7P1 = 0x55;

; using EM78569
MOV A, @0x00
BC 0x03, 5
IOW 0x6

MOV A, @0xFF
BS 0x03, 5
IOW 0x6

MOV A, @0x55
IOW 0x7

100% (8 / 8 * 100)

RAM bank unsigned int myData1
@0x20: bank 0;
unsigned int myData2
@0x21: bank 0;
unsigned int myData3
@0x21: bank 1;

myData1 = 1;
myData2 = 2;
myData3 = 3;

; using EM78569
MOV A, @0x01
BC 0x04, 6
BC 0x04, 7
MOV 0x20, A
MOV A, @0x02
MOV 0x21, A
MOV A, @0x03
BS 0x04, 6
BC 0x04, 7
MOV 0x21, A

100% (10 / 10 * 100)

Bit data type bit myB0R6P0
@0x06@0x00: rpage 0;
bit myB2R6P0
@0x06@0x02: rpage 0;

myB0R6P0 = 1;
myB2R6P0 =
myB0R6P0;

BS 0x06, 0
BC 0x06, 2
JBC 0x06, 0
BS 0x06, 2

133% (4 / 3 * 100)

Appendix B

150 • 16BC Conversion Table EM78 Series IDE User’s Guide

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

indir unsigned myData1
@0x30: ind 0;
indir unsigned myData2
@0x05: ind 1;

myData1 = 0x55;
myData2 = 0xAA;

; using EM78806B
MOV A, @0x55
MOV 0x1B, A
MOV A, @0x30
MOV 0x18, A
MOV A, @0x00
MOV 0x19, A
MOV A, @0x00
MOV 0x1A, A
MOV A, 0x1B
CALL INDIR
MOV A, @0xAA
MOV 0x1B, A
MOV A, @0x05
MOV 0x18, A
MOV A, @0x00
MOV 0x19, A
MOV A, @0x01
MOV 0x1A, A
MOV A, 0x1B
CALL INDIR
……

146% (35 / 24 * 100) Indirect addressing

 INDIR:
BC 0x05, 0
MOV 0x1B, A
MOV A, 0x1A
JBS 0x03, 2
JMP 0x081
MOV A, 0x18
IOW 0x9
MOV A, 0x1B
IOW 0xA
RET

LCDRAM:
MOV A, 0x18
 MOV 0x0A, A
 MOV A, 0x1B
 MOV 0x0B, A
 RET

Appendix B

EM78 Series IDE User’s Guide 16BC Conversion Table • 151

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

f = e & d;
(f = e ^ d;)
(f = e | d;)

MOV A, %e
AND A, %d
(XOR A, %d)
(OR A, %d)
MOV %f, A

100% (3 / 3 * 100)

f=~e;

COMA %e
MOV %f, A

100%(2/2*100)

f &=e;
(f ^=e;)
(f |= e)

MOV A, %e
AND %f , A
(XOR %f, A)
(OR %f, A)

100%(2/2*100)

f = e >> 1;
BC 0x03, 0
RRCA %e
MOV %f, A

100% (3 / 3 * 100)

f = e << 1; BC 0x03, 0
RLCA %e
MOV %f, A

100% (3 / 3*100)

f>>=3; BC 0x03, 0
RRC %f
BC 0x03, 0
RRC %f
BC 0x03, 0
RRC %f

100%(6/6*100)

f<<=3 BC 0x03, 0
RLC %f
BC 0x03, 0
RLC %f
BC 0x03, 0
RLC %f

100%(6/6*100)

f>>=4 SWAPA 0x06
AND A, @0x0F
MOV 0x06, A

100%(3/3*100)

f<<=4 SWAPA 0x06
AND A, @0xF0
MOV 0x06, A

100%(3/3*100)

f>>=6; SWAP 0x06
RRC 0x06
RRCA 0x06
AND A, @0x03
MOV 0x06, A

100%(5/5*100)

Bitwise operation
(all variables are
“unsigned int” data
type)

f<<=6; SWAP 0x06
RLC 0x06
RLCA 0x06
AND A, @0xC0
MOV 0x06, A

100%(5/5*100)

Appendix B

152 • 16BC Conversion Table EM78 Series IDE User’s Guide

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

f=(e<<5) | d; MOV A, %e
MOV 0x14, A
SWAP 0x14
RLCA 0x14
AND A, @0xE0
OR A, %d
MOV %f, A

100%(7/7*100)

f=(f & const.1) | const. 2 MOV A, 0x06
AND A, const. 1
OR A, const. 2
MOV 0x06, A

100%(4/4*100)

f = e + d;

MOV A, %e
ADD A, %d
MOV %f, A

100% (3 / 3 * 100)

f = e – d; MOV A, %d
SUB A, %e
MOV %f, A

100%(3/3*100)

f++; INC %f 100% (1 / 1 * 100%)
f—; DEC %f 100% (1 / 1 * 100%)
c = a * b; MOV A, %a

 MOV 0X1C,A
 MOV A, %b
 MOV 0X18, A
 CLRA
L1:
 ADD A, 0X1C
 DJZ 0X18
 JMP L1
 MOV %c, A

100%(9/9*100%)

Arithmetic expression
(all variables are “int”
data type)

c = a / b; MOV A, %a
 MOV 0x1C, A
 MOV A, %b
 CLR 0x18
L1:
 SUB 0x1C, A
 JBC 0x03, 0
 INC 0x18
 JBC 0x03, 0
 JMP 0x3BB
 MOV A, 0x18
 MOV %c, A

100%(11/11*100%)

Appendix B

EM78 Series IDE User’s Guide 16BC Conversion Table • 153

Description C Statement
Example Assembly Code

Conversion Rate
(Compiler’s Code Size / General

User’s Code Size * 100%)

f += e;
(f -= e;)
(f &= e)
(f ^= e)
(f |= e)

MOV A, %e
ADD %f, A
(SUB %f, A)
(AND %f, A)
(XOR %f, A)
(OR %f, A)

100% (2 / 2 * 100%)

f >>= 1; BC 0x03,0
RRC %f

100% (2 / 2 * 100%)

Compound
assignment
(all variables are “int”
data type)

f <<= 1 BC 0x03,0
 RLC %f

100% (2 / 2 * 100%)

Appendix B

154 • 16BC Conversion Table EM78 Series IDE User’s Guide

Appendix C

EM78 Series IDE User’s Guide 18BFrequently Asked Questions (FAQ) • 155

Appendix C

Frequently Asked
Questions (FAQ)
C.1 FAQ on Assembly

1. Q: ICE cannot connect to PC

A: Please check the following steps:
Step 1 Check the power supply with output around the voltage range of

17~23V.
Step 2 Check the printer/USB cable between ICE and PC.
Step 3 Check the oscillator on the hardware.
Step 4 From the Option menu, choose ICE code option. Check the type

of oscillator in the code option.
Step 5 If the problem still exists, then check again with another PC.
Step 6 Repeat from Step 1.
Step 7 If it is still not solved, please call ELAN.

2. Q: The connection from ICE to PC is successful, but program dumping
fails.

A: Please check the following steps:
Step 1 Click Option ICE Code Setting. Then, check the type of

oscillator in the code option.
Step 2 Check whether the type of MCU selected in software is the same

as that in hardware.

3. Q: After checking ICE memory and found memory is in error.

A: Please check the following steps:
Step 1 Click Option ICE Code Setting. Then, check the type of

oscillator in the code option.
Step 2 Check whether the type of MCU selected in software is the same

with that in hardware.
Step 3 Change ICE SRAM.

Appendix C

156 • 18BFrequently Asked Questions (FAQ) EM78 Series IDE User’s Guide

4. Q: When trying to reconnect the same ICE with PC, why does the
execution become slower and slower?

A: The communication timing between ICE and PC is stretched when you
repeat the connection several times.

5. Q: Why “Step Into” will not execute?

A: Check whether the type of MCU selected in software is the same with
that in hardware.

6. Q: If the source files are located in Novell file server, why does the
program is reassembled again at each execution?

A: It is caused by the time difference between the PC and server. It is
therefore, recommended to locate all source files in the local disk of your
computer. Whether you are connected to network or not, does not
matter.

C.2 FAQ on Tiny C Compiler
1. Q: What is the maximum number of the function parameters?

A: It depends on the RAM bank size (about 32 or 31 bytes).

2. Q: In a function, what is the maximum depth of the function call?

A: It depends on the hardware stack depth or size.

3. Q: What is the maximum array dimension as well as maximum array
element?

A: It depends on the RAM bank size (about 32 or 31 bytes).

4. Q: Is there any error message when the code exceeds the ROM size?

A: Yes, the linker will report an allocation error.

5. Q: In a high level interrupt subroutine, can I allocate the address in the
ROM? (e.g., using “page” data type, putting “_asm{ org xxx}”
before a subroutine, etc.)

A: No! This may cause unpredictable error.

6. Q: Is “static” used in the same way as in ANSI C?

A: Yes.

Appendix C

EM78 Series IDE User’s Guide 18BFrequently Asked Questions (FAQ) • 157

7. Q: Is there any error message in case I define too many variables in the
“const” that exceeds the ROM space?

A: Yes, the linker will report an allocation error.

8. Q: How do I declare the variable in *.h file and use such variable in
several *.c files?

A: Declare an *.h file variable as shown in the following example:
 extern io unsigned int DIRPORT6;

 Then in *.c file, write the variable as shown below (you need to write in
just one *.c file only):

 io unsigned int DIRPORT6 @0x06: iopage 0;

9. Q: When should I change any program page or bank?

A: If you are just developing your program in C language, you do not have
to change any program page, register page, ram bank, and so on.
However, if you are using inline assembly in your program, you need to
manually change, save, and restore page or bank.

10. Q: How do I know how many stacks I have called?

A: In C development environment, after compiling, you can find the
resulting function call depth status in the Information tab of Output
window.

11. Q: Does the C compiler only occupies 0x10~0x1F of the general
purpose ram?

A: Well, the C compiler generally occupies 0x10~0x1F of the general
purpose register. However, if some arguments occur in call functions,
the compiler will use some others ram in 0x20~0x3F, Bank 0 ~ Bank 3.
So, it is suggested that you use global variables to replace arguments in
call function.

 Always take note that some ram spaces are used in the interrupt save
procedure and interrupt service procedure if these ram spaces are not in
used.

12. Q: Does the C compiler support EM78P510N?

A: TCC2 supports all EM78 series ICs except EM78x680 and EM78x611.

Appendix C

158 • 18BFrequently Asked Questions (FAQ) EM78 Series IDE User’s Guide

13. Q: How do I use macro with variable?

A: Follow the example below:
 io unsigned int P6CR@0x06:iopage 0;
 …
 #define set_output(port, bit) _asm{ ior port};\
 _asm{ and a,@(~(1<<bit))};\
 _asm{ iow port)

 …
 set_output(%P6CR,0x04);

14. Q: Does C Compiler supports all assembly instruction?

A: TCC2 supports all assembly instruction. However, some instructions
have to be implemented in inline assembly format, such as MUL, TBRD,
TBWD, and MOV R, R.

15. Q: How can I clear all ram in all banks?

A: There are two key points in this issue. One is to keep Bit 5, R4, as 1. The
other point is to switch the bank correctly. But some ICs use a
non-global register to switch ram bank, such as EM78P510N. So users
need to understand its particular characteristics to avoid error. For
example:

unsigned int iR0:0x0:rpage 0;
unsigned int RSR:0x4:rpage 0;
unsigned int BRSR:0x5:rpage 0;
unsigned int i:0x11:rpage 0;
…
for(i=0;i<0x8;i++)
{
 BRSR=i;
 For(RSR=0xFF;RSR>=0xE0;RSR--)
 {
 iR0=0;
 }
}

mailto:P6CR@0x06:iopage

Appendix C

EM78 Series IDE User’s Guide 18BFrequently Asked Questions (FAQ) • 159

C.4 Contacting ELAN FAE
For customer service assistance on UICE hardware or UIDE software problems,
please contact ELAN FAE engineer at following address:

ELAN
MICROELECTRONICS CORPORATION
No. 12, Innovation 1st Rd.,
Hsinchu Science Park
Hsinchu City, Taiwan 3076
TEL:886-3-5639977
http://www.emc.com.tw

义隆电子股份有限公司
深圳市高新科技产业园南区高新南一道

国微大厦 3 层
电话:009 86 755 2601-0565
网址: http://www.emc.com.tw

Appendix C

160 • 18BFrequently Asked Questions (FAQ) EM78 Series IDE User’s Guide

Appendix D

EM78 Series IDE User’s Guide 20BUICE Hardware Description • 161

Appendix D

UICE Hardware
Description Description
D.1 UICE (USB) and its Major Components/Functions D.1 UICE (USB) and its Major Components/Functions

E B C D A

H
G

F

Figure D-1 EM78 Series UICE Main Board

Appendix D

162 • 20BUICE Hardware Description EM78 Series IDE User’s Guide

Where:
Component Function

A USB B type connector (connects to PC)
B DC power adaptor connector and switch (supports all ICE power needs)
C ROMLESS program data bus connector (connects to ROMLESS board)

D Power select jumper (Close: system will work in 5V,
 Open: system will support 3.3V)

E ROMLESS program address bus and relative control signal connector
(connects to ROMLESS board)

F C8051 ISP port
(connects to PC through C8051 ISP download cable to update UICE firmware)

G System power LED display
H UICE free run LED display

NOTE
1. When changing the UITxxxx ROMLESS board on UICE, be sure the UICE power is

OFF and the USB connector is disconnected before making the change.
2. You must check to ensure the target system power is of 3.3V or 5V application before

turning on UICE power. If your target system is of 3.3V application, the JP2
(Component “D” in the above figure) on UICE board must be at open position and at
close position if target system is of 5V before turning on the UICE power.

D.2 Special Note on eUIDE Software and UIT660N
eUIIDE version 1.00.13 and later, supports UIT660N. It does NOT support
IT660N

eUIIDE version 1.00.12 and previous versions, supports IT660N. It does not
work on UIT660N

Appendix E

EM78 Series IDE User’s Guide 22BLibrary Application Notes • 163

Appendix E

Library Application
Notes
E.1 C Library

The C library cannot be called by the assembly project. At the same time, the
assembly library cannot be called by the C project.

Because of the linker limitation, this function cannot be provided.

E.2 Assembly Library
The Assembly library can only use absolute addressing

Because of the assembly assembler limitation, it cannot relocate the addresses.
You have to write “org 0xXXX” clearly in front of the assembly source file
when writing assembly library. But you do not need to write the address
definition when you use the pseudo instructions XCALL/XJMP instead of all
CALL/JMP instructions in the assembly library source codes.

Appendix E

164 • 22BLibrary Application Notes EM78 Series IDE User’s Guide

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 165

Appendix F

C Standard Library
F.1 Character Class Tests: “ctype.h”

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
char tolower(int c);
char toupper(int c);

F.2 String Functions: “string.h”
int strcpy(char * to, char * from);
int strncpy(char * to, char * from, int size);
int strcat(char * to, char * from);
int strncat(char * to, char * from, int size);
int strcmp(char * s1, char * s2);
int strncmp(char * s1, char * s2, int len);
int strchr(char * ptr, int chr);
int strrchr(char * ptr, int chr);
int strspn(char * s1, char * s2);
int strcspn(char * s1, char * s2);
int strpbrk(char * s1, char * s2);
int strstr(char * s1, char * s2);
int strlen(char * s);
int strtok(char * s1, char * s2);
int memcpy(void * d1, void * s1, int n);
int memmove(void * d1, void * s1, int n);
int memcmp(void *s1, void *s2, int n);
int memchr(void *p, int n, int v);
int memset(void * p1, int c, int n);

Appendix F

166 • 24BC Standard Library EM78 Series IDE User’s Guide

F.3 Mathematical Functions: “math.h”
float sin(float x);

float cos(float x);

float tan(float x);

float asin(float x);

float acos(float x);

float atan(float x);

float atan2(float x, float y);

float sinh(float x);

float cosh(float x);

float tanh(float x);

float exp(float x);

float log(float x);

float log10(float x);

float pow(float x, float y);

float sqrt(float a);

float ceil(float x);

float floor(float x);

float fabs(float x);

float ldexp(float x, int pw2);

float frexp(float x, int *pw2);

float modf(float x, float *y);

float cot(float x);

F.4 Utility Functions: “stdlib.h”
float atof(char * s);

int atoi(char * s);

long atol(char * s);

int rand(void);

void srand(unsigned int);

void itoa(int value, char* string, unsigned char radix);

int abs(int);

long labs(long);

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 167

F.5 Others

F.5.1 Variable Argument Lists: “stdarg.h”

typedef unsigned char * va_list;

#define va_start(list, last) list = (unsigned char
*)&last + sizeof(last)

#define va_arg(list, type)*((type *)((list +=
sizeof(type)) - sizeof(type)))

#define va_end(list) list = ((va_list) 0)

F.5.2 Limits: “limits.h” and “float.h”
 “limits.h” define the following symbols:

#define CHAR_BIT 8

#define SCHAR_MAX 127

#define SCHAR_MIN -128

#define UCHAR_MAX 0xff

#define UCHAR_MIN 0

#define CHAR_MAX SCHAR_MAX

#define CHAR_MIN SCHAR_MIN

#define INT_MIN SCHAR_MIN

#define INT_MAX SCHAR_MAX

#define SHRT_MAX 32767

#define SHRT_MIN -32768

#define UINT_MAX 256

#define UINT_MIN 0

#define USHRT_MAX 65526

#define USHRT_MIN 0

#define LONG_MIN -2147483648

#define LONG_MAX 2147483647

#define ULONG_MAX 0xffffffff

#define ULONG_MIN 0

Appendix F

168 • 24BC Standard Library EM78 Series IDE User’s Guide

 “float.h” define the following symbols:

#define FLT_RADIX 2

#define FLT_MANT_DIG 16

#define FLT_EPSILON 1.192092896E-07F

#define FLT_DIG 6

#define FLT_MIN_EXP (-125)

#define FLT_MIN 1.175494351E-38F

#define FLT_MIN_10_EXP (-37)

#define FLT_MAX_EXP (+128)

#define FLT_MAX 3.402823466E+38F

#define FLT_MAX_10_EXP (+38)

#define EXCESS 126

#define SIGNBIT ((unsigned long)0x00800000)

#define HIDDEN (unsigned long)(1ul << 15)

#define SIGN(fp) (((unsignedlong)(fp)>> (8*sizeof(fp)-1)) &
1)

#define EXP(fp) (((unsigned long)(fp) >> 15) & (unsigned
int) 0x00FF)

#define MANT(fp) (((fp) & (unsigned long)0x00007FFF) |
HIDDEN)

#define NORM 0x00ff0000

#define PACK(s,e,m) ((s) | ((unsigned long)(e) << 15) | (m))

F.6 Manual of Functions
F.6.1 Character Classification Routines –

isalnum, isalpha, iscntrl, isdigit, isgraph, islower,
isprint, ispunct, isspace, isupper, isxdigit

 Synopsis:
#include “ctype.h”
int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
char tolower(int c);

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 169

 Description:

The following functions check whether “c,” which must have the value of an
unsigned character or EOF, falls into a certain character type according to its
current location.

isalnum() Check for an alphanumeric character. It is equivalent to (isalpha(c)
|| isdigit(c)).

isalpha() Check for an alphabetic character in the standard "C" location. It is
equivalent to (isupper(c) || islower(c)). In some locations, there may
be additional characters for which isalpha() is true (letters which are
neither upper case nor lower case).

iscntrl() Check for a control character

isdigit() Check for a digit (0 through 9)

isgraph() Check for any printable character except space

islower() Check for a lower-case character

isprint() Check for any printable character including space

ispunct() Check for any printable character which is not a space nor an
alphanumeric character.

isspace() Check for white-space characters. In the "C" and "POSIX"
locations, these are: space, form-feed ('\f'), newline ('\n'),
carriage return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').

isupper() Check for an uppercase letter

isxdigit() Check for a hexadecimal digits, i.e., one of 0 1 2 3 4 5 6 7 8 9 a b c d
e f A B C D E F.

 Return Value:

The nonzero values are returned if the character “c” falls into the tested class,
otherwise, a zero value is returned.

NOTE
The details of what characters belong to which class depends on the current location.
For example, isupper() will not recognize an A - umlaut as an uppercase letter in the
default “C” location.

 See Also:

tolower, toupper (Section F.6.2 below)

Appendix F

170 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.2 Convert Letter to Upper or Lower Case –
tolower, toupper

 Synopsis:
#include “ctype.h”
char toupper(int c);
char tolower(int c);

 Description:

toupper() converts the letter “c” to upper case, if possible.

tolower() converts the letter “c” to lower case, if possible.

If “c” is not an unsigned character value or EOF, the behavior of these functions
is undefined.

 Return Value:

The value returned is that of the converted letter, or “c” if the conversion was
not successful.

 See Also:

isalpha (Section F.6.1)

F.6.3 Copy a String – strcpy, strncpy
 Synopsis:

#include “string.h”
int strcpy(char * to, char * from);
int strncpy(char * to, char * from, int size);

 Description:

strcpy() Copies the string pointed at by “from” (including the terminating ‘\0’
character) to the array pointed at by “to”. The strings should not
overlap, and the destination string “to” must be large enough to
accommodate the copied string.

strncpy() Function is similar with the above, except that no more than n bytes
of “from” are copied. Thus, if there is no null byte among the first n
bytes of “to,” the result will not be null-terminated.

 In the case where the length of “from” is less than that of n, the
remainder of “to” will be padded with nulls.

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 171

 Return Value:

The strcpy() and strncpy() functions return a pointer to the destination “to”
string.

F.6.4 Link Two Strings – strcat, strncat
 Synopsis:

#include “string.h”
int strcat(char * to, char * from);
int strncat(char * to, char * from, int size);

 Description:

strcat() Append the “from” string to the “to” string overwriting the ‘\0’
character at the end of “to,” and then add a terminating ‘\0’
character. The strings should not overlap, and the “to” string must
have enough space to accommodate the result.

strncat() Function is similar with the above, except that only the first n
characters of “from” are appended to “to.”

 Return Value:

The strcat() and strncat() functions return a pointer to the resulting “to” string.

F.6.5 Compare Two Strings – strcmp, strncmp
 Synopsis:

#include “string.h”
int strcmp(char * s1, char * s2);
int strncmp(char * s1, char * s2, int len);

 Description:

strcmp() Compare the two strings “s1” and “s2.” It returns an integer less
than, equal to, or greater than zero if “s1” is found to be less than,
matches, or greater than “s2” respectively.

strncmp() Function is similar with the above except it only compares the first
(at most) n characters of “s1”and “s2.”

 Return Value:

The strcmp() and strncmp() functions return an integer less than, equal to, or
greater than zero if “s1” (or the first n bytes thereof) is found to be less than,
matches, or greater than “s2” respectively.

Appendix F

172 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.6 Locate Character in String – strchr, strrchr
 Synopsis:

#include “string.h”
int strchr(char * ptr, int chr);
int strrchr(char * ptr, int chr);

 Description:

strchr() Return a pointer to the first occurrence of the character “chr” in the
“ptr” string.

strrchr() Return a pointer to the last occurrence of the character “chr” in the
“ptr” string.

NOTE
"character" means "byte" - these functions do not work with wide or multi-byte
characters.

 Return Value:

The strchr() and strrchr() functions return a pointer to the matched character
or NULL if the character is not found.

 See Also:

strpbrk, strstr, strtok (Sections F.6.8, F.6.9, & F.6.11 respectively)

F.6.7 Search a String of a Specified Set of Characters –
strspn, strcspn

 Synopsis:
#include “string.h”
int strspn(char * s1, char * s2;
int strcspn(char * s1, char * s2);

 Description:

strspn() Calculate the length of the initial segment of “s1” which consists
entirely of characters in “s2” string.

strcspn() Calculate the length of the initial segment of “s1” which consists
entirely of characters not found in “s2” string.

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 173

 Return Value:

The strspn() function returns the number of characters in the initial segment of
“s1” which consists only of characters that match those of “s2” string.

The strcspn() function returns the number of characters in the initial segment of
“s1” which consists of characters that do not match with the “s2” string.

 See Also:

strpbrk, strstr, strtok (Sections F.6.8, F.6.9, & F.6.11 respectively)

F.6.8 Search a String of Any Set of Characters –
strpbrk

 Synopsis:
#include “string.h”
int strpbrk(char * s1, char * s2);

 Description:

strpbrk() Locate the first occurrence in “s1” string of any of the characters
stated in the “s2” string.

 Return Value:

The strpbrk() function returns a pointer to the character in “s1” string that
matches with the characters in “s2” string. Otherwise, it returns a NULL if no
such character is found.

 See Also:

strchr, strspn, strstr, strtok (Sections F.6.6, F.6.7, F.6.9, & F.6.11 respectively)

F.6.9 Locate a Substring – strstr

 Synopsis:
#include “string.h”
int strstr(char * s1, char * s2);

 Description:

strstr() Find the first occurrence of the “s2” substring in the “s1” string. The
terminating “\0” character is not compared.

Appendix F

174 • 24BC Standard Library EM78 Series IDE User’s Guide

 Return Value:

The strstr() function returns a pointer to the beginning of the substring that
matches with the characters in “s1” string. Otherwise, it returns a NULL if no
such substring is found.

 See Also:

strchr, strspn, strpbrk, strtok (Sections F.6.6, F.6.7, F.6.8, & F.6.11
respectively)

F.6.10 Calculate the Length of a String – strlen

 Synopsis:
#include “string.h”
int strlen(char *s);

 Description:

strlen() Calculate the length of the “s” string (excluding the terminating “\0”
character.

 Return Value:

The strlen() function returns the number of characters in “s” string.

F.6.11 Extract Tokens from Strings – strtok

 Synopsis:
#include “string.h”
int strtok(char * s1, char * s2);

 Description:

strtok() Used to parse the “s1” string into tokens. The first call to strtok()
should have the “s1” string as its first argument. Subsequent calls
should have the first argument set to NULL. Each call returns a pointer
to the next token, or NULL when no more tokens are found.

 If a token ends with a delimiter, this delimiting character is overwritten
with a ‘\0’ and a pointer to the next character is saved for the next call
to strtok(). The delimiter string “s2” may be different for each call.

NOTE
A “token” is a nonempty string of characters that do not occur in the string delimiter,
followed by ‘\0’ or by a character occurring in the delimiter.

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 175

 Return Value:

The strtok() function returns a pointer to the next token, or a NULL if there are
no more tokens.

 See Also:

strchr, strspn, strpbrk, strstr (Sections F.6.6, F.6.7, F.6.8, & F.6.9 respectively)

F.6.12 Copy Memory Area – memcpy

 Synopsis:
#include “string.h”
int memcpy(void * d1, void * s1, int n);

 Description:

memcpy() Copy n bytes from memory area “s1” to memory area “d1”. The
memory areas should not overlap. Use memmove(3) if the
memory areas do overlapped (see Section 6.13 below).

 Return Value:

The memcpy() function returns a pointer to “d1”.

 See Also:

strcpy/strncpy, memmove, (Sections F.6.3, & F.6.13 respectively)

F.6.13 Copy Memory Area – memmove

 Synopsis:
#include “string.h”
int memmove(void * d1, void * s1, int n);

 Description:

memmove() Copy n bytes from memory area “s1” to memory area “d1”. The
memory areas may overlap.

 Return Value:

The memmove() function returns a pointer to “d1”.

 See Also:

strcpy/strncpy, memcpy (Sections F.6.3, & F.6.12 respectively)

Appendix F

176 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.14 Compare Memory Areas – memcmp

 Synopsis:
#include “string.h”
int memcmp(void *s1, void *s2, int n);

 Description:

memcmp() Compare the first n bytes between the memory areas “s1” and “s2.”
It returns an integer less than, equal to, or greater than zero if “s1”
is found to be less than, to match, or greater than “s2” respectively.

 Return Value:

The memcmp() function returns an integer less than, equal to, or greater than
zero if the first n bytes of “s1” is found to be less than, to match, or be greater
than the first n bytes of “s2” respectively.

 See Also:

strcmp, strncmp (Sections F.6.5)

F.6.15 Scan Memory for a Specified Character – memchr

 Synopsis:
#include “string.h”
int memchr(void *p, int n, int v);

 Description:

memchr() Scan the first n bytes of the memory area pointed to by “p” for the
character “n”. The first byte to match “n” (interpreted as an
unsigned character) stops the operation.

 Return Value:

The memchr() functions return a pointer to the matched byte or return a NULL
if the character is not found in the given memory area.

 See Also:

strspn, strpbrk, strstr (Sections F.6.7, F.6.8, & F.6.9 respectively)

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 177

F.6.16 Fill Memory with a Constant Byte – memset

 Synopsis:
#include “string.h”
int memset(void * p1, int c, int n);

 Description:

memset() Fill the first n bytes of the memory area pointed to by “p1” with the
constant byte “c”.

 Return Value:

The memset() function returns a pointer to the memory area “p1”.

F.6.17 Sine Function – sin

 Synopsis:
#include “math.h”
float sin(float x);

 Description:

sin() Return the sine of “x”, where “x” is given in radians.

 Return Value:

The sin() function returns a value between –1 and 1.

 See Also:

cos, tan, asin, acos, atan, atan2 (Sections F.6.18 to F.6.23 respectively)

F.6.18 Cosine Function – cos

 Synopsis:
#include “math.h”
float cos(float x);

 Description:

cos() Return the cosine of “x”, where “x” is given in radians.

 Return Value:

The cos() function returns a value between -1 and 1.

Appendix F

178 • 24BC Standard Library EM78 Series IDE User’s Guide

 See Also:

sin, tan, asin, acos, atan, atan2 (Sections F.6.17, F.6.19 to F.6.23 respectively)

F.6.19 Tangent Function – tan

 Synopsis:
#include “math.h”
float tan(float x);

 Description:

tan() Return the tangent of “x”, where “x” is given in radians.

 See Also:

sin, cos, asin, acos, atan, atan2 (Sections F.6.17, F.6.18, & F.6.20 to F.6.23
respectively)

F.6.20 Arcsine Function – asin

 Synopsis:
#include “math.h”
float asin(float x);

 Description:

asin() Calculate the arcsine of “x” (the inverse value of sine x). If “x” falls
outside the range of –1 to 1, asin() fails and “errno” is set.

 Return Value:

The asin() function returns the arcsine in radians and the value is
mathematically defined to be between –PI/2 and PI/2 (inclusive).

 Error Definition:

EDOM “x” is out of range.

 See Also:

sin, cos, tan, acos, atan, atan2 (Sections F.6.17 to F.6.19 & F.6.21 to F.6.23
respectively)

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 179

F.6.21 Arccosine Function – acos

 Synopsis:
#include “math.h”
float acos(float x);

 Description:

acos() Calculate the arccosine of “x” (the inverse value of cosine x). If “x”
falls outside the range of –1 to 1, acos() fails and “errno” is set.

 Return Value:

The acos() function returns the arccosine in radians and the value is
mathematically defined to be between 0 and PI (inclusive).

 Error Difinition:

EDOM “x” is out of range.

 See Also:

sin, cos, tan, asin, atan, atan2 (Sections F.6.17 to F.6.20 & F.6.22 to F.6.23
respectively)

F.6.22 Arctangent Function – atan

 Synopsis:
#include “math.h”
float atan(float x);

 Description:

atan() Valculate the arctangent of “x”; (the inverse value of tangent x).

 Return Value:

The atan() function returns the arc tangent in radians and the value is
mathematically defined to be between –PI/2 and PI/2 (inclusive).

 See Also:

sin, cos, tan, asin, acos, atan2 (Sections F.6.17 to F.6.21 & F.6.23 respectively)

Appendix F

180 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.23 Arctangent Function of Two Variables – atan2

 Synopsis:
#include “math.h”
float atan2(float y, float x);

 Description:

atan2() Calculate the arctangent of the two variables x and y. It is similar to
calculating the arctangent of y / x, except that the signs of both
arguments are used to determine the quadrant of the result.

 Return Value:

The atan2() function returns the result in radians, which is between –PI and PI
(inclusive).

 See Also:

sin, cos, tan, asin, acos, atan (Sections F.6.17, to F.6.21 & F.6.22 respectively)

F.6.24 Hyperbolic Sine Function – sinh

 Synopsis:
#include “math.h”
float sinh(float x);

 Description:

sinh() Return the hyperbolic sine of x, which is defined mathematically as
(exp(x) - exp(-x)) / 2.

 See Also:

cosh, tanh (Sections F.6.25 & F.6.26 respectively)

F.6.25 Hyperbolic Cosine Function – cosh

 Synopsis:
#include “math.h”
float cosh(float x);

 Description:

cosh() Returns the hyperbolic cosine of “x”, which is defined mathematically
as (exp(x) + exp(-x)) / 2.

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 181

F.6.26 Hyperbolic Tangent Function – tanh

 Synopsis:
#include “math.h”
float tanh(float x);

 Description:

tanh() Return the hyperbolic tangent of “x”, which is defined mathematically
as sinh(x) / cosh(x).

 See Also:

sinh, cosh (Sections F.6.24 & F.6.25 respectively)

F.6.27 Exponential, Logarithmic, and Power Functions –
exp, log, log10, pow

 Synopsis:
#include “math.h”
float exp(float x);
float log(float x);
float log10(float x);
float pow(float x, float y);

 Description:

exp() Return the value of “e” (the base of natural logarithms) raised to the
power of “x”

log() Return the natural logarithm of “x”
log10() Return the base-10 logarithm of “x”
pow() Return the value of “x” raised to the power of “y”

 Errors Definitions:

The log() and log10() functions return the following errors:
• EDOM The argument “x” is negative.
• ERANGE The argument “x” is zero. The log of zero is not defined.

The pow() function returns the following error:
• EDOM The argument “x” is negative and “y” is not an integral

value. This would result in a complex number.

 See Also:

sqrt (Section F.6.28)

Appendix F

182 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.28 Square Root Function – sqrt

 Synopsis:
#include “math.h”
float sqrt(float x);

 Description:

sqrt() Return the non-negative square root of “x”. if “x” is negative, it fails
and sets “errno” to EDOM.

 Errors Definition:

EDOM “x” is negative.

F.6.29 Ceiling Function: Smallest Integral Value Not Less
Than Argument – ceil

 Synopsis:
#include “math.h”
float ceil(float x);

 Description:

ceil() Round up “x” to the nearest integer.

 Return Value:

The rounded integer value is returned. If “x” is integral or infinite, “x” itself is
returned.

 Errors:

No errors other than EDOM and ERANGE can occur. If “x” is NaN, then NaN
is returned and “errno” may be set to EDOM.

 See Also:

floor (Section F.6.30)

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 183

F.6.30 Largest Integral Value Not Greater than
Argument – floor

 Synopsis:
#include “math.h”
float floor(float x);

 Description:

floor() Round down “x” to the nearest integer.

 Return Value:

Return the rounded integer value. If “x” is integral or infinite, “x” itself is
returned.

 Errors:

No errors other than EDOM and ERANGE can occur. If “x” is NaN, then NaN
is returned and “errno” may be set to EDOM.

 See Also:

ceil (Section F.6.29)

F.6.31 Absolute Value of Floating-Point Number – fabs

 Synopsis:
#include “math.h”
float fabs(float x);

 Description:

Fabs() Return the absolute value of the floating-point number “x”.

 See Also:

ceil, floor, abs (Sections F.6.29, F.6.30, & F.6.38 respectively)

Appendix F

184 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.32 Multiply Floating-Point Number by Integral Power
of 2 – ldexp

 Synopsis:

#include “math.h”
float ldexp(float x, int pw2);

 Description:

ldexp() Return the result of multiplying the floating-point number “x” by 2
raised to the power exponent.

F.6.33 Convert Floating-Point Number to Fractional and
Integral Components – frexp

 Synopsis:
#include “math.h”
float frexp(float x, int *pw2);

 Description:

frexp() Split the number “x” into a normalized fraction and an exponent, and
store them in “pw2”.

 Return Value:

The frexp() function returns the normalized fraction. If the argument “x” is not
zero, the normalized fraction is “x” times a power of two, and is always in the
range of 1/2 (inclusive) to 1 (exclusive). If “x” is zero, then the normalized
fraction is zero and zero is stored in “pw2”.

 Example:
#include “stdio.h”
#include “math.h”
#include “float.h”
int main () {
float d = 2560;
int e;
float f = frexp(d, &e);
printf("frexp(%g, &e) = %g: %g * %d^%d = %g\n",
 d, f, f, FLT_RADIX, e, d);
return 0;
}
This program prints
frexp(2560, &e) = 0.625: 0.625 * 2^12 = 2560

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 185

 See Also:

ldexp, modf (Section F.6.32 & F.6.34 respectively)

F.6.34 Extract Signed Integral and Fractional Values
from Floating-Point Number – modf

 Synopsis:
#include “math.h”
float modf(float x, float *y);

 Description:

modf() Split the argument “x” into an integral part and fractional part, each of
which has the same sign as “x”. The integral part is stored in “y”.

 Return Value:

The modf() function returns the fractional part of “x”.

 See Also:

ldexp, frexp (Section F.6.32 & F.6.33 respectively)

F.6.35 Convert a String to a Float – atof

 Synopsis:
#include “stdlib.h”
float atof(char *nptr);

 Description:

atof() Convert the initial portion of the string pointed at by “nptr” to float. The
behaviour is the same as -

 strtod(nptr, (char **)NULL);

 except that atof() does not detect errors.

 Return Value:

The converted value.

 See Also:

atoi, atoll (Sections F.6.36)

Appendix F

186 • 24BC Standard Library EM78 Series IDE User’s Guide

F.6.36 Convert a String to an Integer – atoi, atol

 Synopsis:
#include “stdlib.h”
int atoi(char *s);
long atol(char *s);

 Description:

atoi() Convert the initial portion of the string pointed at by “s” to “int”.
However, atoi() does not detect errors.

atol() Behave the same way as atoi(), except that they convert the initial
portion of the string to their return type of long.

 Return Value:

The converted value.

 See Also:

atof, (Sections F.6.35)

F.6.37 Random Number Generator – rand, srand

 Synopsis:
#include “stdlib.h”
int rand(void);
void srand(unsigned int seed);

 Description:

rand() Return a pseudo-random integer between “0” and RAND_MAX.

srand() Set its argument as the seed for a new sequence of pseudo-random
integers to be returned by rand(). These sequences can be repeated by
calling srand() with the same seed value.

 If no seed value is provided, the rand() function is automatically
seeded with a value of “1.”

 Return Value:

The rand() function returns a value between 0 and RAND_MAX. The srand()
returns no value.

Appendix F

EM78 Series IDE User’s Guide 24BC Standard Library • 187

F.6.38 Compute the Absolute Value of an Integer –
 abs, labs

 Synopsis:
#include “stdlib.h”
int abs(int j);
long labs(long int j);

 Description:

abs() Compute the absolute value of the integer argument “j.”

labs() Compute the absolute value of the argument “j” with the appropriate
integer type for the function.

 Return Value:

Return the absolute value of the integer argument with the appropriate integer
type for such function.

NOTE
Attempt to take the absolute value of the most negative integer is not defined.

 See Also:

ceil, floor, fabs (Sections F.6.29 to F.6.31 respectively)

F.7 Application Notes
 The EM78 C Standard Library is applicable only to c project.

 The EM78 C support 24 bits float/double type

 Float/double type = 1 sign bit + 7 bits exponent + 15 bits mantissa

 Because the mantissa’s bit resolution is reduced, the precision will be
downgraded.

 You must take precautions of possible problems on float overflow and
underflow.

Appendix F

188 • 24BC Standard Library EM78 Series IDE User’s Guide

 To avoid space from overflowing when using ram, do not make the float
expression too complex. For example:

 Float x,y,z,result;
 Result = (((x*3.5)+y)/z)*5.3;

 The above float expression may cause the ram space to overflow. Suggest
to revise expression as follows:

 Float x,y,x,tmp,result;
 Result = x*3.5;
 Result += y;
 Result /=z;
 Result *=5.3;

	Chapter 1Introduction
	1.1 Overview
	1.2 Introduction to eUIDE Program
	1.2.1 eUIDE Main User Interface
	1.2.2 eUIDE Sub-Windows
	1.2.2.1 Project Window
	1.2.2.2 Editor Window
	1.2.2.3 Special Register Window
	1.2.2.4 Call Stack Window
	1.2.2.5 RAM Bank (General Registers) Window
	1.2.2.6 Watch Window
	1.2.2.7 Data RAM Window
	1.2.2.8 LCD RAM Window
	1.2.2.9 EEPROM Window
	1.2.2.10 Output Window

	1.2.3 eUIDE Menu Bar
	1.2.4 ToolBar
	1.2.4.1 Toolbar Icons and its Functions and Hotkeys
	1.2.4.2 Document Bar
	1.2.4.3 Status Bar

	Chapter 2
	The eUIDE Commands
	2.1 eUIDE Menu Bar and its Menu Commands
	2.1.1 File Menu
	2.1.2 Edit Menu
	2.1.2.1 Executing Find Command from Edit Menu
	2.1.2.2 Executing Find Command with Shortcut Hotkeys

	2.1.3 View Menu
	2.1.4 Project Menu
	2.1.4.1 Executing “Dump code over 64K to sram” Command

	2.1.5 Debug Menu
	2.1.5.1 “Run From” Command Sub-Menu Function Description
	2.1.5.2 “Address Breakpoint” Dialog Function Description

	2.1.6 Tool Menu
	2.1.6.1 Computing Execution Time
	2.1.6.2 Moving Data from File to SRAM (Applicable to EM78815 only)

	2.1.7 Option Menu
	2.1.7.1 Debug Option Setting
	2.1.7.2 Accelerate Reading Registers
	2.1.7.3 View Setting
	2.1.7.4 Environment Setting
	2.1.7.5 Customize…

	2.1.8 Window Menu
	2.1.9 Help Menu

	Chapter 3
	Getting Started
	3.1 Overview
	3.1.1 System Requirements
	3.1.2 Software Installation
	3.1.3 ANSI Compatibility

	3.2 Hardware Power-up
	3.3 Starting the eUIDE Program
	3.3.1 Connect Dialog
	3.3.1.1 Reconnection

	3.3.2 Code Option Dialog
	3.3.3 Accelerate Reading Registers Dialog

	3.4 Create a New Project
	3.4.1 Using the Project Wizard (Project (Project Wizard)
	3.4.2 Using the New Command (File/Project (New…)

	3.5 Add and Remove Source Files from/to Project
	3.5.1 Create and Add a New Source File for the Project
	3.5.2 Add Existing Source Files to the New Project
	3.5.3 Deleting Source Files from Project

	3.6 Editing Source Files from Folder/Project
	3.6.1 Open Source File from Folder for Editing
	3.6.2 Open Source File from Project for Editing

	3.7 Compile the Project
	3.8 Dumping the Compiled Program to ICE
	3.9 Debugging a Project
	3.9.1 Breakpoints Setting

	Chapter 4
	Assembler and Linker
	4.1 Assembler and Linker Process Flow
	4.2 Statement Syntax
	4.2.1 How to Define Label

	4.3 Number Type
	4.4 Assembler Arithmetic Operation
	4.5 Program Directives
	4.6 Conditional Assembly
	4.7 Reserved Word
	4.7.1 Directives, Operators
	4.7.2 Instructions Mnemonics

	4.8 Pseudo Instruction

	Chapter 5
	C Fundamental Elements
	5.1 Comments
	5.2 Reserved Words
	5.3 Preprocessor Directives
	5.3.1 #include
	5.3.2 #define
	5.3.3 #if, #else, #elif, #endif
	5.3.4 #ifdef, #ifndef

	5.4 Literal Constants
	5.4.1 Numeric Constant
	5.4.2 Character Constant
	5.4.3 String Constant

	5.5 Data Type
	5.6 Enumeration
	5.7 Structure and Union
	5.8 Array
	5.9 Pointer
	5.10 Operators
	5.10.1 Types of Supported Operators
	5.10.2 Prefix of Operators

	5.11 If-else Statement
	5.12 Switch Statement
	5.13 While Statement
	5.14 Do-while Statement
	5.15 For Statement
	5.16 Break and Continue Statements
	5.17 Goto Statement
	5.18 Function
	5.18.1 Function Prototype
	5.18.2 Function Definition

	Chapter 6
	C Control Hardware Related Programming
	6.1 Register Page (rpage)
	6.2 I/O Control Page (iopage)
	6.3 Ram Bank
	6.4 Bit Data Type
	6.5 Data/LCD RAM Indirect Addressing
	6.6 Allocating C Function to Program ROM
	6.7 Putting Data in ROM
	6.8 Inline Assembler
	6.8.1 Reserved Word
	6.8.2 Use of C Variable in the Inline Assembly

	6.9 Using Macro
	6.10 Interrupt Routine
	6.10.1 Interrupt Save Procedure
	6.10.2 Interrupt Service Routine
	6.10.3 Reserved Common Registers Operation

	Chapter 7
	Quick Workout on Tiny C Compiler
	7.1 Introduction
	7.2 Create a New Project
	7.3 Add a New “C” File to the Project
	7.4 Add a Second File or a New Header File to the Project
	7.5 The Main(), Interrupt Save, and Service Routine Functions
	7.6 Project Development with Interrupt
	7.7 Tips on C Compiler Debugging
	7.7.1 Speed up Debugging
	7.7.2 View Corresponding Assembly Code in C Environment
	7.7.3 Viewing Defined Variables in Register Window
	7.7.4 Reducing Codes Size in Some Cases

	Appendix A
	Assembly Error/ Warning Messages
	A.1 Introduction
	A.2 Class M: Main Program Errors Messages
	A.3 Class A: Assembler Errors/Warnings Messages
	A.4 Class L: Linker Error Messages
	A.5 Class D: Debugger Error Messages

	Appendix B
	C Conversion Table
	B-1 Conversion between C and Assembly Codes

	Appendix C
	Frequently Asked Questions (FAQ)
	C.1 FAQ on Assembly
	C.2 FAQ on Tiny C Compiler
	C.4 Contacting ELAN FAE

	Appendix D
	UICE Hardware Description
	D.1 UICE (USB) and its Major Components/Functions
	D.2 Special Note on eUIDE Software and UIT660N

	Appendix E
	Library Application Notes
	E.1 C Library
	E.2 Assembly Library

	Appendix F
	C Standard Library
	F.1 Character Class Tests: “ctype.h”
	F.2 String Functions: “string.h”
	F.3 Mathematical Functions: “math.h”
	F.4 Utility Functions: “stdlib.h”
	F.5 Others
	F.5.1 Variable Argument Lists: “stdarg.h”
	F.5.2 Limits: “limits.h” and “float.h”

	F.6 Manual of Functions
	F.6.1 Character Classification Routines – isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit
	F.6.2 Convert Letter to Upper or Lower Case –tolower, toupper
	F.6.3 Copy a String – strcpy, strncpy
	F.6.4 Link Two Strings – strcat, strncat
	F.6.5 Compare Two Strings – strcmp, strncmp
	F.6.6 Locate Character in String – strchr, strrchr
	F.6.7 Search a String of a Specified Set of Characters – strspn, strcspn
	F.6.8 Search a String of Any Set of Characters –strpbrk
	F.6.9 Locate a Substring – strstr
	F.6.10 Calculate the Length of a String – strlen
	F.6.11 Extract Tokens from Strings – strtok
	F.6.12 Copy Memory Area – memcpy
	F.6.13 Copy Memory Area – memmove
	F.6.14 Compare Memory Areas – memcmp
	F.6.15 Scan Memory for a Specified Character – memchr
	F.6.16 Fill Memory with a Constant Byte – memset
	F.6.17 Sine Function – sin
	F.6.18 Cosine Function – cos
	F.6.19 Tangent Function – tan
	F.6.20 Arcsine Function – asin
	F.6.21 Arccosine Function – acos
	F.6.22 Arctangent Function – atan
	F.6.23 Arctangent Function of Two Variables – atan2
	F.6.24 Hyperbolic Sine Function – sinh
	F.6.25 Hyperbolic Cosine Function – cosh
	F.6.26 Hyperbolic Tangent Function – tanh
	F.6.27 Exponential, Logarithmic, and Power Functions – exp, log, log10, pow
	F.6.28 Square Root Function – sqrt
	F.6.29 Ceiling Function: Smallest Integral Value Not Less Than Argument – ceil
	F.6.30 Largest Integral Value Not Greater than Argument – floor
	F.6.31 Absolute Value of Floating-Point Number – fabs
	F.6.32 Multiply Floating-Point Number by Integral Power of 2 – ldexp
	F.6.33 Convert Floating-Point Number to Fractional and Integral Components – frexp
	F.6.34 Extract Signed Integral and Fractional Values from Floating-Point Number – modf
	F.6.35 Convert a String to a Float – atof
	F.6.36 Convert a String to an Integer – atoi, atol
	F.6.37 Random Number Generator – rand, srand
	F.6.38 Compute the Absolute Value of an Integer – abs, labs

	F.7 Application Notes

