MC1403,
 B

Low Voltage Reference

A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with D/A converters, up to 12 bits in accuracy, or as a reference for power supply applications.

- Output Voltage: $2.5 \mathrm{~V} \pm 25 \mathrm{mV}$
- Input Voltage Range: 4.5 V to 40 V
- Quiescent Current: 1.2 mA Typical
- Output Current: 10 mA
- Temperature Coefficient: $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typical
- Guaranteed Temperature Drift Specification
- Equivalent to AD580
- Standard 8-Pin DIP, and 8-Pin SOIC Package

Typical Applications

- Voltage Reference for 8 to 12 Bit D/A Converters
- Low T_{C} Zener Replacement
- High Stability Current Reference
- Voltmeter System Reference

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {I }}$	40	V
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+175	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range MC1403B MC1403	T_{A}		-40 to +85
0 to +70			

PRECISION LOW VOLTAGE REFERENCE

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package			
MC1403D	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8			
MC1403P1	MC1403BD	$\mathrm{T}_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$			
MC1403BP1					
					Plastic DIP

Figure 1. A Reference for Monolithic D/A Converters

Providing the Reference Current for ON Semiconductor Monolithic D/A Converters

The MC1403 makes an ideal reference for many monolithic D/A converters, requiring a stable current reference of nominally 2.0 mA . This can be easily obtained from the MC1403 with the addition of a series resistor, R1. A variable resistor, R2, is recommended to provide means for fullscale adjust on the D/A converter.

The resistor R3 improves temperature performance by matching the impedance on both inputs of the D/A reference amplifier. The capacitor decouples any noise present on the reference line. It is essential if the D/A converter is located any appreciable distance from the reference.
A single MC1403 reference can provide the required current input for up to five of the monolithic D/A converters.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{in}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage $\left(\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}\right)$	$V_{\text {out }}$	2.475	2.5	2.525	V
Temperature Coefficient of Output Voltage* MC1403	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	-	10	40	ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Change* (Over specified temperature range) $\begin{array}{ll} \text { MC1403 } & 0 \text { to }+70^{\circ} \mathrm{C} \\ \text { MC1403B } & -40 \text { to }+85^{\circ} \mathrm{C} \end{array}$	$\Delta \mathrm{V}_{\mathrm{O}}$	-	-	$\begin{gathered} 7.0 \\ 12.5 \end{gathered}$	mV
$\begin{aligned} & \text { Line Regulation }\left(\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}\right) \\ & \left(15 \mathrm{~V} \leqslant \quad \mathrm{~V}_{1} \leqslant 40 \mathrm{~V}\right) \\ & \left(4.5 \mathrm{~V} \leqslant \mathrm{~V}_{1} \leqslant 15 \mathrm{~V}\right) \end{aligned}$	Regline	-	$\begin{aligned} & 1.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	mV
Load Regulation $\left(0 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}\right)$	Regload	-	-	10	mV
Quiescent Current $\left(\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}\right)$	I_{Q}	-	1.2	1.5	mA

*Guaranteed but not tested.

Figure 2. MC1403, B Schematic

This device contains 15 active transistors.

Figure 3. Typical Change in $\mathrm{V}_{\text {out }}$ versus $\mathrm{V}_{\text {in }}$ (Normalized to $\mathrm{V}_{\text {in }}=15 \mathrm{~V} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)

Figure 5. Quiescent Current versus Temperature

Figure 4. Change in Output Voltage versus Load Current
(Normalized to $\mathrm{V}_{\text {out }} @ \mathrm{~V}_{\text {in }}=15 \mathrm{~V}, \mathrm{I}_{\text {out }}=0 \mathrm{~mA}$)

Figure 6. Change in $\mathrm{V}_{\text {out }}$ versus Temperature
(Normalized to $\mathrm{V}_{\text {out }} @ \mathrm{~V}_{\text {in }}=15 \mathrm{~V}$)

Figure 7. Change in $\mathrm{V}_{\text {out }}$ versus Temperature
(Normalized to $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=15 \mathrm{~V}$, $\mathrm{I}_{\text {out }}=0 \mathrm{~mA}$)

MC1403, B

3-1/2-Digit Voltmeter - Common Anode Displays, Flashing Overrange

An example of a 3-1/2-digit voltmeter using the MC14433 is shown in the circuit diagram of Figure 8. The reference voltage for the system uses an MC1403 2.5 V reference IC. The full scale potentiometer can calibrate for a full scale of 199.9 mV or 1.999 V . When switching from 2.0 V to 200 mV operation, R_{I} is also changed, as shown on the diagram.

When using R_{C} equal to $300 \mathrm{k} \Omega$, the clock frequency for the system is about 66 kHz . The resulting conversion time is approximately 250 ms .

When the input is overrange, the display flashes on and off. The flashing rate is one-half the conversion rate. This
is done by dividing the EOC pulse rate by 2 with $1 / 2$ MC14013B flip-flop and blanking the display using the blanking input of the MC14543B.

The display uses an LED display with common anode digit lines driven with an MC14543B decoder and an MC1413 LED driver. The MC1413 contains 7 Darlington transistor drivers and resistors to drive the segments of the display. The digit drive is provided by four MPS-A12 Darlington transistors operating in an emitter-follower configuration. The MC14543B, MC14013B and LED displays are referenced to V_{EE} via Pin 13 of the MC14433. This places the full power supply voltage across the display. The current for the display may be adjusted by the value of the segment resistors shown as 150Ω in Figure 8.

Figure 8. 3-1/2-Digit Voltmeter

MC1403, B
PACKAGE DIMENSIONS

P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05
ISSUE L

NOTES:

1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUCKAGE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
4. DIMENSIONIN

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	9.40	10.16	0.370	0.400		
B	6.10	6.60	0.240	0.260		
C	3.94	4.45	0.155	0.175		
D	0.38	0.51	0.015	0.020		
F	1.02	1.78	0.040			
0.070						
G	2.54 BSC		0.100 BSC			
H	0.76	1.27	0.030	0.050		
J	0.20	0.30	0.008	0.012		
K	2.92	3.43	0.115			
L	7.62		BSC	0.300		BSC
M	---	10°	---			
N	0.76	1.01	0.030	0.040		

MC1403, B
PACKAGE DIMENSIONS

MC1403, B
Notes

MC1403, B

$$
\begin{aligned}
& \text { ON Semiconductor and } \\
& \text { without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular } \\
& \text { purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, } \\
& \text { including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or } \\
& \text { specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be } \\
& \text { validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. } \\
& \text { SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications } \\
& \text { intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or } \\
& \text { death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold } \\
& \text { SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable } \\
& \text { attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim } \\
& \text { alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. }
\end{aligned}
$$

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

