

Preliminary Specifications

2.4-GHz FSK/GFSK Transceiver IC

Beken Corporation Suite 303-304, No. 10, 198 Zhangheng Rd, Shanghai 201204, China PHONE: (86)21 6160 9676/7/8 FAX: (86)21 6160 9679

This document contains information that may be proprietary to, and/or secrets of, Beken Corporation. The contents of this document should not be disclosed outside the companies without specific written permission.

Disclaimer: Descriptions of specific implementations are for illustrative purpose only, actual hardware implementation may differ.

Content

1	General Description	3						
2	Key Features	3						
3	Applications							
4	Chip Block Diagram 4							
5	Pin information							
6	Functional Description	7						
	6.1 TDD RF Transceiver	7						
	6.2 FSK/GFSK MODEM	7						
	6.3 State control	7						
	6.3.1 State control diagram	7						
	6.3.2 Power Down mode	9						
	6.3.3 Standby-I mode	9						
	6.3.4 Standby-II mode	9						
	6.3.5 TX mode	9						
	6.3.6 RX mode	. 10						
	6.4 Packet processing	. 10						
	6.4.1 Packet format	. 10						
	6.4.1.1 Preamble	. 11						
	6.4.1.2 Address	. 11						
	6.4.1.3 Packet control.	. 12						
	6.4.1.4 Payload	. 13						
	6.4.1.5 CRC	. 13						
	6.4.2 Packet handling	. 14						
	6.5 TX/RX FIFO	. 14						
	6.6 Interrupt	. 15						
	6.7 SPI Interface	. 16						
	6.7.1 SPI command	. 16						
	6.7.2 SPI timing	. 17						
	6.7.3 Register map	. 19						
	6.7.3.1 Register bank 0	. 19						
	6.7.3.2 Register bank 1	. 24						
7	Design Specification	. 25						
8	Typical Application Schematic	. 26						
9	Package information	. 29						
10	0 Order information	. 31						

1 General Description

BK2411/BK2412 is a FSK/GFSK transceivers operating in the world wide ISM frequency band at 2.397 – 2.4835 GHz. The embedded packet processing engine enables its full operation with a very simple MCU as a radio system. Burst mode transmission and up to 2 Mbps air data rate make it suitable for applications requiring ultra low power consumption. Auto re-transmission and auto acknowledge give reliable link without any MCU interference.

2 Key Features

- Worldwide 2.4 GHz ISM band operation
- FSK enables better sensitivity and GFSK gives better spectrum efficiency
- 1 Mbps or 2 Mbps air data rate
- Programmable output power: -35, -25, -15, -5, 0, 5 dBm
- TX 14 mA power consumption at 0 dBm output power
- RX 21mA power consumption at 1 Mbps air data rate
- Tolerate +/- 60ppm 16 MHz crystal
- Three levels variable payload length from 1 to 32 bytes, or one level variable payload length from 1 to 255 bytes
- Automatic packet processing
- 6 data pipes for 1:6 star networks
- 1.9 V to 3.6 V power supply
- 3 uA DC current at power down mode and 410 uA in standby-I mode
- 4-pin SPI interface with MCU with maximum 8 Mbps clock rate
- Compact 20-pin 4x4 mm QFN package for BK2411
- Compact 24-pin 4x4 mm QFN package for BK2412 with separate TX and RX antenna interface

3 Applications

• Wireless mouse, keyboard and joystick

4 Chip Block Diagram

Figure 2 DK2412 Cmp block blagram

BK2412 is exactly the same as BK2411 in functionality, except BK2412 has separate TX and RX antenna interfaces for easy working with external PA.

5 Pin information

Figure 3 BK2411 pin assignment (top view) for the QFN20 4x4 package

Table 1 BK2411 chip pin functions								
PIN	Name	Pin Function	Description					
1	CE	Digital Input	Chip Enable Activates RX or TX mode					
2	CSN	Digital Input	SPI Chip Select					
3	SCK	Digital Input	SPI Clock					
4	MOSI	Digital Input	SPI Slave Data Input					
5	MISO	Digital Output	SPI Slave Data Output with tri-state option					
6	IRQ	Digital Output	Mask able interrupt pin. Active low					
7	VDD	Power	Power Supply (1.9 V to 3.3 V DC)					
8	VSS	Ground	Ground (0 V)					
9	XTALP	Analog Input	Crystal oscillator, node P (inverter output)					
10	XTALN	Analog Output	Crystal oscillator, node N (inverter input)					
11	VDDPA	Power	1.8V Regulated output for PA					
12	RFP	RF port	RF output (PA) /input (LNA), port P.					
13	RFN	RF port	RF output (PA) /Input (LNA), port N.					
14	VSS	Ground	Ground (0 V)					
15	VDD	Power	Power Supply (1.9 V to 3.3 V DC)					
16	IREF	Analog Output	Analog output; reference current generation					
17	VSS	Ground	Ground (0 V)					
18	VDD	Power	Power Supply (1.9 V to 3.3 V DC)					
19	CDVDD	Analog Output	Digital regulator output decoupling cap					
20	VSS	Ground	Ground (0 V)					

Table 1 BK2411 chip pin functions

Figure 4 BK2412 pin assignment (top view) for the QFN24 4x4 package

Table 2	BK2412 c	hip pin functions	
PIN	Name	Pin Function	Description
1	CE	Digital Input	Chip Enable Activates RX or TX mode
2	CSN	Digital Input	SPI Chip Select
3	NC	NC	Floating
4	SCK	Digital Input	SPI Clock
5	MOSI	Digital Input	SPI Slave Data Input
6	MISO	Digital Output	SPI Slave Data Output with tri-state option
7	IRQ	Digital Output	Mask able interrupt pin. Active low
8	VDD	Power	Power Supply (1.9 V to 3.3 V DC)
9	VSS	Ground	Ground (0 V)
10	XTALP	Analog Input	Crystal Pin 2
11	XTALN	Analog Output	Crystal Pin 1
12	NC	NC	Floating
13	VDDPA	Analog Output	1.8V Regulated output for PA
14	POUTP	RF TX port	RF output (PA), port P.
15	POUTN	RF TX port	RF output (PA), port N.
16	LNAIN	RF RX port	RF input (LNA), port N.
17	LNAIP	RF RX port	RF input (LNA), port P.
18	VSS	Ground	Ground (0 V)
19	VDD	Power	Power Supply (1.9 V to 3.3 V DC)
20	IREF	Analog Input	Reference current
21	VSS	Ground	Ground (0 V)
22	VDD	Power	Power Supply (1.9 V to 3.3 V DC)
23	CDVDD	Analog Output	Digital regulator output decoupling cap
24	VSS	Ground	Ground (0 V)

6 Functional Description

6.1 TDD RF Transceiver

BK2411/BK2412 operates in TDD mode, either as a transmitter or as a receiver.

The RF channel frequency determines the center of the channel used by BK2411/BK2412. It can operate on frequencies from 2.397 GHz to 2.4835 GHz. The resolution of the RF channel frequency is 1 MHz.

The RF channel frequency is set by the RF_CH register in register bank 0 according to the following formula: F0= 2397 + RF_CH [MHz] (1 Mbps mode) or F0= 2398 + RF_CH [MHz] (2 Mbps mode). In following chapters, all registers are in register bank 0 except with explicit claim.

A transmitter and a receiver must be programmed with the same RF channel frequency to be able to communicate with each other.

The output power of BK2411/BK2412 is set by the RF_PWR bits in the RF_SETUP register.

6.2 FSK/GFSK MODEM

BK2411/BK2412 supports both FSK and GFSK modulation, which can be set by MODU_MOD register in register bank 1.

Demodulation is done with embedded data slicer and bit recovery logic. The air data rate can be programmed to 1 Mbps or 2 Mbps by RF_DR register. A transmitter and a receiver must be programmed with the same setting.

6.3 State control

6.3.1 State control diagram

BK2411/BK2412 has a built-in state machine that control the state transition between different modes. State transition is fully controlled by MCU when auto acknowledge feature is not enabled. Otherwise there is automatic state transition sometimes for auto acknowledge and auto re-transmission.

Page 7 of 31

Figure 6 PRX (PRIM_RX=1) state control diagram

- Pin signal: VDD, CE
- SPI register: PWR_UP, PRIM_RX, EN_AA, NO_ACK, ARC, ARD
- System information: Time out, ACK received, ARD elapsed, ARC_CNT, TX FIFO empty, ACK packet transmitted, Packet received

6.3.2 Power Down mode

In power down mode BK2411/BK2412 is in sleep mode with minimal current consumption. SPI interface is still active in this mode. And, all register values are available by SPI. Power down mode is entered by setting the PWR_UP bit in the CONFIG register to low.

6.3.3 Standby-I mode

By setting the PWR_UP bit in the CONFIG register to 1 and de-asserting CE to 0, the device enters into standby-I mode. Standby-I mode is used to minimize average current consumption while maintaining short start-up time. In this mode, part of the crystal oscillator is active. This is also the mode which the BK2411/BK2412 returns to from TX or RX mode when CE is set low.

6.3.4 Standby-II mode

In standby-II mode more clock buffers are active than in standby-I mode and much more current is used. Standby-II occurs when CE is held high on a PTX device with empty TX FIFO. If a new packet is uploaded to the TX FIFO in this mode, the device will automatically enter into TX mode and the packet is transmitted.

6.3.5 TX mode

■ PTX device (PRIM_RX=0)

The TX mode is an active mode where the PTX device transmits a packet. To enter this mode from power down mode, the PTX device must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and, a high pulse on the CE for more than 10μ s.

The PTX device stays in TX mode until it finishes transmitting the current packet. If CE = 0 it returns to standby-I mode. If CE = 1, the next action is determined by the status of the TX FIFO. If the TX FIFO is not empty the PTX device remains in TX mode, transmitting the next packet. If the TX FIFO is empty the PTX device goes into standby-II mode.

If the auto retransmit is enabled (EN_AA=1) and auto acknowledge is required (NO_ACK=0), the PTX device will enter into TX mode from standby-I mode when ARD elapsed and number of retried is less than ARC.

 $\blacksquare PRX device (PRIM_RX=1)$

The PRX device will enter into TX mode from RX mode only when EN_AA=1 and NO_ACK=0 in received packet to transmit acknowledge packet with pending payload in TX FIFO.

6.3.6 RX mode

 $\blacksquare PRX device (PRIM_RX=1)$

The RX mode is an active mode where the BK2411/BK2412 radio is configured to be a receiver. To enter this mode from standby-I mode, the PRX device must have the PWR_UP bit set high, PRIM_RX bit set high and the CE pin set high. Or PRX device can enter this mode from TX mode after transmitting a acknowledge packet when EN_AA=1 and NO_ACK=0 in received packet.

In this mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the packet processing engine. The packet processing engine continuously searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFO. If the RX FIFO is full, the received packet is discarded.

The PRX device remains in RX mode until the MCU configures it to standby-I mode or power down mode.

In RX mode a carrier detection (CD) signal is available. The CD is set to high when a RF signal is detected inside the receiving frequency channel. The signal must be FSK/GFSK modulated for a secure detection. Other signals can also be detected. The CD is set high when an RF signal is detected in RX mode, otherwise CD is low. The internal CD signal is filtered before presented to CD register. The RF signal must be present for about 200 μ s before the CD is set high.

■ PTX device (PRIM_RX=0)

The PTX device will enter into RX mode from TX mode only when EN_AA=1 and NO_ACK=0 to receive acknowledge packet.

6.4 Packet processing

6.4.1 Packet format

There are two packet formats as follows.

ВЕ	KEN			BK24	11/BK2412					v0.5
	Preamble 1 byte Address 3~5 byte Packet Control 9/0 bit Payload 0~32 byte CRC 2/1 byte						byte			
	Payload Length 6 bit				PID 2 bit		NO_ACK 1 bit			
	Figure 7 Pack			et Forn	nat at Normal	Payload M	ode			
	Pream	able 1 byte	Address 3-5 byte	Packet	Control 11/0 bit	Pavload 0~	255 byte	CRC 2/1	byte	
	Address 5-5 byte							oyte		
	Payload Length & hit						'K 1 bit			
	Payload Length 8 bit PID 2 bit NO_ACK 1 bit									

Figure 8 Packet Format at Long Payload Mode

In normal payload mode, there are three levels 32 bytes FIFO for both TX and RX, supporting both acknowledge mode or no acknowledge mode with up to six pipes.

In long payload mode, there is single level 255 bytes TX and RX FIFO.

Payload mode can be selected by LONG_PL register in register bank 1.

6.4.1.1 Preamble

The preamble is a bit sequence used to detect 0 and 1 levels in the receiver. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver.

6.4.1.2 Address

This is the address for the receiver. An address ensures that the packet is detected by the target receiver. The address field can be configured to be 3, 4, or 5 bytes long by the AW register.

The PRX device can open up to six data pipes to support up to six PTX devices with unique addresses. All six PTX device addresses are searched simultaneously. In PRX side, the data pipes are enabled with the bits in the EN_RXADDR register. By default only data pipe 0 and 1 are enabled.

Each data pipe address is configured in the RX_ADDR_PX registers.

Each pipe can have up to 5 bytes configurable address. Data pipe 0 has a unique 5 byte address. Data pipes 1-5 share the 4 most significant address bytes. The LSB byte must be

unique for all 6 pipes.

To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet.

On the PRX the RX_ADDR_Pn, defined as the pipe address, must be unique. On the PTX the TX_ADDR must be the same as the RX_ADDR_P0 and as the pipe address for the designated pipe.

No other data pipe can receive data until a complete packet is received by a data pipe that has detected its address. When multiple PTX devices are transmitting to a PRX, the ARD can be used to skew the auto retransmission so that they only block each other once.

6.4.1.3 Packet control

When EN_AA=0 and ARC=0, there is no packet control field.

When EN_AA=1, the packet control field contains a 6/8 bit payload length field, a 2 bit PID (Packet Identity) field and, a 1 bit NO_ACK flag.

Payload length

The payload length field is only used if the Dynamic Payload Length function is enabled.

> PID

The 2 bit PID field is used to detect whether the received packet is new or retransmitted. PID prevents the PRX device from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC fields are used by the PRX device to determine whether a packet is old or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, BK2411/BK2412 compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded.

➢ NO_ACK

The NO_ACK flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to be auto acknowledged. The PTX can set the NO_ACK flag bit in the Packet Control Field with this command: W_TX_PAYLOAD_NOACK

However, the function must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit. When you use this option the PTX goes directly to standby-I

mode after transmitting the packet and the PRX does not transmit an ACK packet when it receives the packet.

6.4.1.4 Payload

The payload is the user defined content of the packet. It can be 0 to 32 bytes wide in normal payload mode or 0 to 255 bytes wide in long payload mode, and it is transmitted on-air as it is uploaded (unmodified) to the device.

The BK2411/BK2412 provides two alternatives for handling payload lengths, static and dynamic payload length for both normal payload mode and long payload mode. The static payload length of each of six data pipes can be individually set in normal payload mode, but share same setting in long payload mode.

The default alternative is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX_PW_Px registers in normal payload mode or the LEN_LONG in long payload mode on the receiver side. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO and must equal the value in the RX_PW_Px register on the receiver side. In normal payload mode, each pipe has its own payload length, but has same payload length in long payload mode.

Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means for a system with different payload lengths it is not necessary to scale the packet length to the longest payload.

With DPL feature the BK2411/BK2412 can decode the payload length of the received packet automatically instead of using the RX_PW_Px registers. The MCU can read the length of the received payload by using the R_RX_PL_WID command.

In order to enable DPL the EN_DPL bit in the FEATURE register must be set. In RX mode the DYNPD register has to be set. A PTX that transmits to a PRX with DPL enabled must have the DPL_P0 bit in DYNPD set.

6.4.1.5 CRC

The CRC is the error detection mechanism in the packet. The number of bytes in the CRC is set by the CRCO bit in the CONFIG register. It may either be 1 or 2 bytes and is calculated over the address, Packet Control Field, and Payload.

The polynomial for 1 byte CRC is $X^8 + X^2 + X + 1$. Initial value 0xFF The polynomial for 2 byte CRC is $X^{16} + X^{12} + X^5 + 1$. Initial value 0xFFFF

No packet is accepted by receive side if the CRC fails.

6.4.2 Packet handling

BK2411/BK2412 uses burst mode for payload transmission and receive.

The transmitter fetches payload from TX FIFO, automatically assembles it into packet and transmits the packet in a very short burst period with 1 Mbps or 2 Mbps air data rate. After transmission, BK2411 sets TX_DS and gives an active low interrupt IRQ to MCU.

The receiver automatically validates and disassembles received packet, if there is a valid packet within the new payload, it will write the payload into RX FIFO, set RX_DR and give an active low interrupt IRQ to MCU.

When auto acknowledge is enabled (EN_AA=1), the PTX device will automatically wait for acknowledge packet after transmission, and re-transmit original packet with the delay of ARD until a acknowledge packet is received or the number of re-transmission exceeds a threshold ARC. If the later one happens, BK2411/BK2412 will set MAX_RT and give an active low interrupt IRQ to MCU. Two packet loss counters are incremented each time a packet is lost, ARC_CNT and PLOS_CNT in the OBSERVE_TX register. The ARC_CNT counts the number of retransmissions for the current transaction. The PLOS_CNT counts the total number of retransmissions since the last channel change. ARC_CNT is reset by initiating a new transaction. PLOS_CNT is reset by writing to the RF_CH register. It is possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel quality.

The PTX device will retransmit if its RX FIFO is full but received ACK frame has payload.

As an alternative for PTX device to auto retransmit it is possible to manually set the BK2411/BK2412 to retransmit a packet a number of times. This is done by the REUSE_TX_PL command.

When auto acknowledge is enabled, the PTX device will automatically check the NO_ACK field in received packet, and if NO_ACK=0, it will automatically send a acknowledge packet to PRX device. If EN_ACK_PAY is set, and the acknowledge packet can also include pending payload in TX FIFO.

6.5 TX/RX FIFO

The data FIFO are used to store payload that is to be transmitted (TX FIFO) or payload that is received and ready to be clocked out (RX FIFO). The FIFO is accessible in both PTX mode and PRX mode.

The following FIFO is present in BK2411/BK2412:

- Normal payload mode
 - ◆ TX three levels, 32 byte FIFO
 - ◆ RX three levels, 32 byte FIFO
- Long payload mode
 - ◆ TX single level, 255 byte FIFO
 - ◆ RX single level, 255 byte FIFO

Both FIFO have a controller and are accessible through the SPI by using dedicated SPI commands. A TX FIFO in PRX can store payload for ACK packets to three different PTX devices in normal payload mode or to only one PTX device in long payload mode. If the TX FIFO contains more than one payload to a pipe, payloads are handled using the first in - first out principle. The TX FIFO in a PRX is blocked if all pending payloads are addressed to pipes where the link to the PTX is lost. In this case, the MCU can flush the TX FIFO by using the FLUSH_TX command.

The RX FIFO in PRX may contain payload from up to three different PTX devices in normal payload mode, or to only one PTX devices in long payload mode.

A TX FIFO in PTX can have up to three payloads stored.

The TX FIFO can be written to by three commands, W_TX_PAYLOAD and W_TX_PAYLOAD_NO_ACK in PTX mode and W_ACK_PAYLOAD in PRX mode. All three commands give access to the TX_PLD register.

The RX FIFO can be read by the command R_RX_PAYLOAD in both PTX and PRX mode. This command gives access to the RX_PLD register.

The payload in TX FIFO in a PTX is NOT removed if the MAX_RT IRQ is asserted.

In the FIFO_STATUS register it is possible to read if the TX and RX FIFO are full or empty. The TX_REUSE bit is also available in the FIFO_STATUS register. TX_REUSE is set by the SPI command REUSE_TX_PL, and is reset by the SPI commands W_TX_PAYLOAD or FLUSH TX.

6.6 Interrupt

The BK2411/BK2412 has an active low interrupt (IRQ) pin. The IRQ pin is activated when TX_DS IRQ, RX_DR IRQ or MAX_RT IRQ are set high by the state machine in the STATUS register. The IRQ pin resets when MCU writes '1' to the IRQ source bit in the STATUS register. The IRQ mask in the CONFIG register is used to select the IRQ sources that are allowed to assert the IRQ pin. By setting one of the MASK bits high, the corresponding IRQ source is disabled. By default all IRQ sources are enabled.

The 3 bit pipe information in the STATUS register is updated during the IRQ pin high to low transition. If the STATUS register is read during an IRQ pin high to low transition, the pipe information is unreliable.

6.7 SPI Interface

6.7.1 SPI command

The SPI commands are shown in **Table 3**. Every new command must be started by a high to low transition n CSN.

In parallel to the SPI command word applied on the MOSI pin, the STATUS register is shifted serially out on the MISO pin.

The serial shifting SPI commands is in the following format:

- <Command word: MSB bit to LSB bit (one byte)>
- <Data bytes: LSB byte to MSB byte, MSB bit in each byte first> for all registers at bank 0 and register 9 to register 14 at bank 1
- <Data bytes: MSB byte to LSB byte, MSB bit in each byte first> for register 0 to register 8 at bank 1

Command name	Command word (binary)	# Data bytes	Operation
R_REGISTER	000A AAAA	1 to 5 LSB byte first	Read command and status registers. AAAAA = 5 bit Register Map Address
W_REGISTER	001A AAAA	1 to 5 LSB byte first	Write command and status registers. AAAAA = 5 bit Register Map Address Executable in power down or standby modes only.
R_RX_PAYLOAD	0110 0001	1 to 32 or 1- 255 LSB byte first	Read RX-payload: 1 – 32 bytes or 1-255 bytes. A read operation always starts at byte 0. Payload is deleted from FIFO after it is read. Used in RX mode.
W_TX_PAYLOAD	1010 0000	1 to 32 or 1 to 255 LSB byte first	Write TX-payload: 1 – 32 bytes or 1-255 bytes. A write operation always starts at byte 0 used in TX payload.
FLUSH_TX	1110 0001	0	Flush TX FIFO, used in TX mode
FLUSH_RX	1110 0010	0	Flush RX FIFO, used in RX mode Should not be executed during transmission of acknowledge, that is, acknowledge package will not be completed.
REUSE_TX_PL	1110 0011	0	Used for a PTX device Reuse last transmitted payload. Packets are repeatedly retransmitted as long as CE is high. TX payload reuse is active until W_TX_PAYLOAD or FLUSH TX is executed. TX payload reuse must not be activated or deactivated during package transmission

Table 3 SPI command

		BK2411/BK	2412 v	/0.5
ACTIVATE	0101 0000	1	 This write command followed by data 0x73 activates the following features: R_RX_PL_WID W_ACK_PAYLOAD W_TX_PAYLOAD_NOACK A new ACTIVATE command with the same data deactivates them again. This is executable in power down or stand by modes only. The R_RX_PL_WID, W_ACK_PAYLOAD, and W_TX_PAYLOAD_NOACK features registers a initially in a deactivated state; a write has no effect read only results in zeros on MISO. To activate the registers, use the ACTIVATE command followed data 0x73. Then they can be accessed as any other register in BK2411. Use the same command and d to deactivate the registers again. This write command followed by data 0x53 toggle the register bank, and the current register bank number can be read out from REG7 [7] 	er re ct, a lese by r ata es
R_RX_PL_WID	0110 0000	Ŧ	Read RX-payload width for the top R_RX_PAYLOAD in the RX FIFO.	
W_ACK_PAYLOAD	1010 IPPP	1 to 32 or 1 to 255 LSB byte first	Used in RX mode. Write Payload to be transmitted together with ACK packet on PIPE PPP. (PPP valid in the range from 000 to 101). Maximum three ACK packet payloads can be pending. Payloads with same PPI handled using first in - first out principle. Write payload: 1– 32 bytes or 1– 255 bytes. A write operation always starts at byte 0.	e P are
W_TX_PAYLOAD_NO ACK	1011 000	1 to 32 or 1 to 255 LSB byte first	Used in TX mode. Disables AUTOACK on this specific packet.	
NOP	1111 1111	0	No Operation. Might be used to read the STATUS register	5

6.7.2 SPI timing

Cn: SPI command bit Sn: STATUS register bit Dn: Data Bit (LSB byte to MSB byte, MSB bit in each byte first)

Note: The SPI timing is for bank 0 and register 9 to 14 at bank 1. For register 0 to 8 at bank 1, the byte order is inversed that the MSB byte is R/W before LSB byte.

Figure 10 SPI NOP timing diagram

Symbol	Parameters	Min	Max	Units
Tdc	Data to SCK Setup	2		ns
Tdh	SCK to Data Hold	2		ns
Tcsd	CSN to Data Valid		38	ns
Tcd	SCK to Data Valid		55	ns
Tcl	SCK Low Time	40		ns
Tch	SCK High Time	40		ns
Fsck	SCK Frequency	0	8	MHz
Tr,Tf	SCK Rise and Fall		100	ns
Tcc	CSN to SCK Setup	2		ns
Tcch	SCK to CSN Hold	2		ns
Tcwh	CSN Inactive time	50		ns
Tcdz	CSN to Output High Z		38	ns

Table 4 SPI timing parameter

6.7.3 Register map

There are two register banks, which can be toggled by SPI command "ACTIVATE" followed with 0x53 byte, and bank state can be read from REG7 [7].

6.7.3.1 Register bank 0

Address (Hex)	Mnemonic	Bit	Reset Value	Туре	Description
00	CONFIG				Configuration Register
	Reserved	7	0	R/W	Only '0' allowed
	MASK_RX_DR	6	0	R/W	Mask interrupt caused by RX_DR 1: Interrupt not reflected on the IRQ pin 0: Reflect RX_DR as active low interrupt on the IRQ pin
	MASK_TX_DS	5	0	R/W	Mask interrupt caused by TX_DS 1: Interrupt not reflected on the IRQ pin 0: Reflect TX_DS as active low interrupt on the IRQ pin
	MASK_MAX_RT	4	0	R/W	Mask interrupt caused by MAX_RT 1: Interrupt not reflected on the IRQ pin 0: Reflect MAX_RT as active low interrupt on the IRQ pin
	EN_CRC	3	1	R/W	Enable CRC. Forced high if one of the bits in the EN_AA is high
	CRCO	2	1	R/W	CRC encoding scheme '0' - 1 byte '1' - 2 bytes
	PWR_UP	1	1	R/W	1: POWER UP, 0:POWER DOWN
	PRIM_RX	0	0	R/W	RX/TX control, only can be switched in power down state (REG0[1]=0) 1: PRX, 0: PTX
		\mathcal{A}			
01	EN_AA	Ì			Enable 'Auto Acknowledgment' Function
	Reserved	7:6	00	R/W	Only '00' allowed
	ENAA_P5	5	1	R/W	Enable auto acknowledgement data pipe 5
	ENAA_P4	4	1	R/W	Enable auto acknowledgement data pipe 4
	ENAA_P3	3	1	R/W	Enable auto acknowledgement data pipe 3
	ENAA_P2	2	1	R/W	Enable auto acknowledgement data pipe 2
	ENAA_P1	1	1	R/W	Enable auto acknowledgement data pipe 1
	ENAA_P0	0	1	R/W	Enable auto acknowledgement data pipe 0
02	EN_RXADDR				Enabled RX Addresses
	Reserved	7:6	00	R/W	Only '00' allowed
	ERX_P5	5	0	R/W	Enable data pipe 5.
	ERX_P4	4	0	R/W	Enable data pipe 4.
	ERX_P3	3	0	R/W	Enable data pipe 3.
	ERX_P2	2	0	R/W	Enable data pipe 2.
	ERX_P1	1	1	R/W	Enable data pipe 1.
	ERX_P0	0	1	R/W	Enable data pipe 0.
03	SETUP_AW				Setup of Address Widths (common for all data pipes)

				-	
	Reserved	7:2	000000	R/W	Only '000000' allowed
	AW	1:0	11	R/W	RX/TX Address field width '00' - Illegal
					'01' - 3 bytes
					10 - 4 bytes 111' - 5 bytes
					LSB byte is used if address width is below 5
					bytes
04	SETUD DETD				Satur of Automatia Datronomission
04	SETUP_KETK				Auto Retransmit Delay
	ARD	7:4	0000	R/W	'0000' - Wait 250 uS
					'0001' - Wait 500 uS
					'0010' - Wait 750 uS
					'1111' – Wait 4000 us
					(Delay defined from end of transmission to
					start of next transmission)a
					Auto Retransmit Count
	ARC	3:0	0011	R/W	'0000' - Re-Transmit disabled
					- Up to 1 Re-Transmit on fail of
					AA
					'1111' - Un to 15 Re-Transmit on fail
					of AA
05	RF_CH		The A		RF Channel
	Reserved	7	0	R/W	Only '0' allowed
	RF_CH	6:0	0000010	R/W	Sets the frequency channel BK2411
06	DE SETUD				operates on PE Sotup Pogistor
00	Reserved	7	111	R/W	Only '000' allowed
				10 11	Enable RSSI measurement
	RSSI_EN	6	1	R/W	0: Disable
					1: Enable
					Digital regulator can be shut down or not
	DREG_ON	5	1	R/W	0: Can be shut down in stand-by I mode
					down
	RF PWR[2]	4	1	R/W	RF output power in TX mode
		×			Air Data Rate
	DE DR	3	1		'0' - 1Mbps
	KF_DK	3	1	K/ W	'1' - 2Mbps
					Register 4 and 13 in bank 1 have different
					setting in 1 Mbps and 2 Mbps data rate
					Set RE output power in TX mode
					RF PWR[2:0]
					'000'35dBm
					'001'25 dBm
	RF_PWR[1:0]	2:1		DAY	'010'15 dBm
	,		11	K/W	'011'5 dBm
					'100'5 dBm
					'101'5 dBm
					'110' – 0 dBm
					'111' - 5 dBm
	LNA_HCURR	0	1	R/W	Setup LNA gain

07	STATUS				Status Register (In parallel to the SPI command word applied on the MOSI pin, the STATUS register is shifted serially out on the MISO pin)
	RBANK	7	0	R	Register bank selection states. Switch register bank is done by SPI command "ACTIVATE" followed by 0x53 0: Register bank 0 1: Register bank 1
	RX_DR	6	0	R/W	Data Ready RX FIFO interrupt Asserted when new data arrives RX FIFO Write 1 to clear bit.
	TX_DS	5	0	R/W	Data Sent TX FIFO interrupt Asserted when packet transmitted on TX. If AUTO_ACK is activated, this bit is set high only when ACK is received. Write 1 to clear bit.
	MAX_RT	4	0	R/W	Maximum number of TX retransmits interrupt Write 1 to clear bit. If MAX_RT is asserted it must be cleared to enable further communication.
	RX_P_NO	3:1	111	R	Data pipe number for the payload available for reading from RX_FIFO 000-101: Data Pipe Number 110: RX FIFO Empty 111: Not used
	TX_FULL	0	0	R	TX FIFO full flag. 1: TX FIFO full 0: Available locations in TX FIFO
08	OBSERVE_TX PLOS_CNT	7:4	0	R	Transmit observe register Count lost packets. The counter is overflow protected to 15, and discontinues at max until reset. The counter is reset by writing to RF_CH.
	ARC_CNT	3:0	0	R	Count retransmitted packets. The counter is reset when transmission of a new packet starts.
09	CD	9			
	Reserved	7:1	000000	R	
	CD	0	0	R	Carrier Detect
0A	RX_ADDR_P0	39:0	0xE7E7E 7E7E7	R/W	Receive address data pipe 0. 5 Bytes maximum length. (LSB byte is written first. Write the number of bytes defined by SETUP_AW)
0B	RX_ADDR_P1	39:0	0xC2C2C 2C2C2	R/W	Receive address data pipe 1. 5 Bytes maximum length. (LSB byte is written first. Write the number of bytes defined by SETUP AW)
0C	RX_ADDR_P2	7:0	0xC3	R/W	Receive address data pipe 2. Only LSB
0D	RX_ADDR_P3	7:0	0xC4	R/W	MSB bytes is equal to RX_ADDR_P1[39:8] Receive address data pipe 3. Only LSB MSB bytes is equal to RX_ADDR_P1[39:8]
0E	RX_ADDR_P4	7:0	0xC5	R/W	Receive address data pipe 4. Only LSB. MSB bytes is equal to RX ADDR P1[39:8]
0F	RX_ADDR_P5	7:0	0xC6	R/W	Receive address data pipe 5. Only LSB.

v0.5

FSK/GFSK Transceiver

					MSB bytes is equal to RX ADDR P1[39:8]
					Transmit address Used for a PTX device
					and a service only
10		20.0	0	DAV	Offiy.
10	TX_ADDR	39:0	UXE/E/E	K/W	(LSB byte is written first)
	-		/E/E/		Set RX_ADDR_P0 equal to this address to
					handle automatic acknowledge if this is a
					PTX device
11	RX_PW_P0				
	Reserved	7:6	00	R/W	Only '00' allowed
					Number of bytes in RX payload in data pipe
					0 (1 to 32 bytes).
	RX_PW_P0	5.0	0	P/W	0: not used
		5.0		IV/ W	1 = 1 byte
					32 = 32 bytes
12	RX_PW_P1				
	Reserved	7:6	00	R/W	Only '00' allowed
				- 4	Number of bytes in RX payload in data pipe
	DV DW D1	5.0			1 (1 to 32 bytes).
	KA_PW_PI	5:0	0	DAV	0: not used
			0	K/W	1 = 1 byte
			-		
					32 = 32 bytes
13	RX_PW_P2				
	Reserved	7:6	00	R/W	Only '00' allowed
					Number of bytes in RX payload in data pipe
	RX_PW_P2	5.0	0	R/W	2 (1 to 32 bytes).
		5:0	0		0: not used
		\mathcal{P}			1 = 1 byte
					32 = 32 bytes
			× ×		
14	RX_PW_P3	X			
	Reserved	7:6	00	R/W	Only '00' allowed
					Number of bytes in RX payload in data pipe
		5:0	0		3 (1 to 32 bytes).
	DV DW D2			D/W	0: not used
1	KA_PW_P3			K/ W	1 = 1 byte
		•			
					32 = 32 bytes
15	RX_PW_P4				
	Reserved	7:6	00	R/W	Only '00' allowed
					Number of bytes in RX payload in data pipe
					4 (1 to 32 bytes).
	DV DW D4	5.0	<u> </u>	DAV	0: not used
	KA_PW_P4	5:0	U	K/W	1 = 1 byte
					32 = 32 bytes
16	RX_PW_P5				
	Reserved	7:6	00	R/W	Only '00' allowed
	RX_PW_P5		0		Number of bytes in RX payload in data pipe
		5:0		R/W	5 (1 to 32 bytes).
				11/11	0: not used
					1 = 1 byte

© 2008 Beken Corporation

					32 = 32 bytes
17	FIFO_STATUS				FIFO Status Register
	Reserved	7	0	R/W	Only '0' allowed
					Reuse last transmitted data packet if set
	TV DELICE	6	0		high.
	IA_KEUSE	0	0		The packet is repeatedly retransmitted as
				R	long as CE is high. TX_REUSE is set by the
				I.	SPI command REUSE_TX_PL, and is reset
					by the SPI
					commands W_TX_PAYLOAD or FLUSH
	TX_FULL	5	0	R	TX FIFO full flag
	_				1: 1X FIFO full; 0: Available locations in
					TX FIFO
	TV EMDTV	4	1	р	1 TX FIFO empty hag.
	IA_EMPTI	4	1	ĸ	1: IX FIFO empty 0: Data in TX EIEO
	Pacarnad	3.7	00	D/W	Only '00' allowed
	110301 100	5.2	00		RX FIFO full flag
	RX FULL	1	0	R	1. RX FIFO full
	ICX_I OLL	1	0	n l	0: Available locations in RX FIFO
					BX FIFO empty flag
	RX EMPTY	0	1	R	1: RX FIFO empty
	101_200111	Ŭ			0: Data in RX FIFO
			- X		Written by separate SPI command ACK
N/A	ACK_PLD	255:0	Х	W	packet payload to data pipe number PPP
					given in SPI command
					Used in RX mode only
					Maximum three ACK packet payloads can
					be pending. Payloads with same PPP are
					handled first in first out.
					Written by separate SPI command TX data
N/A	TX_PLD	255:0	X	W	pay-load register 1 - 32 bytes. This register
					is implemented as a FIFO with three levels.
27/1		255.0		5	Used in TX mode only
N/A	RX_PLD	255:0	Х	R	Read by separate SPI command
			Þ		RX data payload register. 1 - 32 bytes.
					This register is implemented as a FIFO with
					All PX channels share the same FIEO
		\$			All KA channels share the same FirO.
10	DYNPD				Enable dynamic payload length
ie	Reserved	7.6	0	P/W	Only '00' allowed
	DDI D5	7.0	0	D/W	Enable dynamic payload length data pipe 5
	DrL_r5	5	0	IX/ W	(Requires EN DPL and ENAA P5)
	DPI PA	4	0	P/W	Enable dynamic payload length data pipe 4
		4	0	10/ 10	(Requires FN DPI and FNAA P4)
	DPL P3	3	0	R/W	Enable dynamic payload length data pipe 3
	DI <u>L_</u> I 5	5	0	10/00	(Requires EN_DPL and ENAA_P3)
	DPL P2	2	0	R/W	Enable dynamic payload length data pipe 2
		_	~		(Requires EN DPL and ENAA P2)
	DPL P1	1	0	R/W	Enable dynamic payload length data pipe 1.
	_		-		(Requires EN_DPL and ENAA P1)
	DPL_P0	0	0	R/W	Enable dynamic payload length data pipe 0.
					(Requires EN_DPL and ENAA_P0)
1D	FEATURE			R/W	Feature Register
	Reserved	7.3	0	R/W	Only '00000' allowed

v0.5

FSK/GFSK Transceiver

	EN_DPL	2	0	R/W	Enables Dynamic Payload Length	
	EN_ACK_PAY	1	0	R/W	Enables Payload with ACK	
	EN_DYN_ACK	0	0	R/W	Enables the W_TX_PAYLOAD_NOACK command	
Note: Don't write reserved registers and registers at other addresses in register bank ()						

6.7.3.2 Register bank 1

Address (Hey)	Mnemonic	Bit	Reset Value	Type	Description
(IICX)	Winchionic	31.0	value	w	Must write with 0x414B01E2
00		31.0	0	W	Must write with 0x414D0112
01		31.0	0	W	Must write with 0x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02		51.0	0	vv	Must while with 0xA0rCC4000
03		31:0	03001200	W	Must write with 0x17003560
					Must write with 0x4199000B (1Mbps data
					rate mode) of 0x4199100B (2 Mbps data rate mode)
					Write with 0x41110421 with make BK2411
04		31:0	0	W	transmit CW at the given channel
					Crystal offset compensation, center at 8.
					User can adjust this register to compensate
	XTALFC	16:13		W	crystal offset
05		31:0	0	W	Must write with 0x24017FBE
					RSSI Threshold for CD detect
]	RSSI_TH	29:26		W	0: -97 dBm, 2 dB/step, 15: -67 dBm
					× ·
06		31:0	0	W	Must write with 0x00004000
07		31:0	0	W	Must write with 0x00000000
					Register bank selection states. Switch
		4			register bank is done by SPI command
					"ACTIVATE" followed by 0x53
				-	0: Register bank 0
	RBANK	7	\rightarrow	R	1: Register bank 1
					BEKEN Chip ID
		21.0	0	D	0.61616161 (BK2411)
08		31:0	0	K	0X64646464 (BK2412)
00			0		Must write with 0x0000000
09		V	0		Must write with 0x0000000
0A 0B			0		Must write with 0xF0F34EF0
0B		21.0	0		Places initialize with 0x2D005540
00		51:0	0		Ty DL look time calesticn
	TV LOCK SEL	10.0		DAV	1 X PLL lock time selection $0: 120 \text{ m}_{\odot} 1: 200 \text{ m}_{\odot} 2: 200 \text{ m}_{\odot} 3: 500 \text{ m}_{\odot}$
	IA_LOCA_SEL	10.9		IX/ W	Ty DA ramping time selection
	TY DAMD SEI	8.5		D/W	0.10 us 1:20 us 2:20 us 15:160 us
	IA_KAWIF_SEL	0.5		IX/ VV	0. 10 us, 1. 20us, 2. 30 us, , 13. 100 us
0D	NEW FEATURE	31.0	0		Please initialize with 0x00007000 (1 Mbps
	ILU ILAIORE	51.0	0		data rate mode) or 0x00000000 (2 Mbps
					data rate mode)
	CYST ACCU	14.12		R/W	Crystal accuracy the worse accuracy
	0151_1000	17.12		11/11	requires the larger value
					Using 7 for crystal accuracy to about 100
					PPM
					Using 0 for crystal accuracy better than 5
					PPM

© 2008 Beken Corporation

		11		R/W	Reserved
	MODU_MOD	10		R/W	Modulation type 1: FSK mode 0: GFSK mode
	GFSK_BT	9		R/W	1: BT = 0.5 0: BT = 1
	LONG_PL	8		R/W	Enable long payload in normal payload mode 1: Enable long payload mode 0: Normal payload mode
	LEN_LONG	7:0		R/W	Payload length for maximum 255 bytes payload
0E	RAMP	87:0	0x 8fbde72aa 16523081 43081	W	Ramp curve Must write with 0xCFEF7CF208104082081041
Note: Don	't write reserved registe	ers and no o	definition regis	ters in reg	ister bank 1

7 Design Specification

7 De	sign Specification					
Name	Parameter (Condition)	Min	Typi cal	Max	Unit	Comm ent
	Operating Condition			•	•	
VDD	Voltage	1.9	3.0	3.6	V	
TEMP	Temperature	-40	+27	+85	°C	
	Digital input Pin 🛛 💧 🔪		1			
VIH	High level	0.7 VDD	VDD	5.25	V	
VIL	Low level		VSS	0.3VDD	V	
	Digital output Pin		•	•		
VOH	High level (IOH=-0.25mA)	VDD- 0.3		VDD	V	
VOL	Low level(IOL=0.25mA)	VSS		0.3	V	
	Normal condition	•	•			
IVDD	Standby-I current			410	uA	
IVDD	Standby-II current			1340	uA	
IVDD	Power Down current			3	uA	
	Normal RF condition	•				
FOP	Operating frequency	2397		2483.5	MHz	
FXTAL	Crystal frequency			16	MHz	
RFSK	Air data rate	1000		2000	kbps	
	Transmitter			-		
PRF	Output power	-35	0	5	dBm	
PBW	Modulation 20 dB bandwidth (2000 kbps) [3]		3000		kHz	
PBW	Modulation 20 dB bandwidth (1000 kbps)		2000		kHz	
PRF1	Out of band emission 2 MHz [3]		-20		dBm	
PRF2	Out of band emission 4 MHz [3]		-50		dBm	
IVDD	Current at -35 dBm output power		8		mA	
IVDD	Current at -25 dBm output power		8		mA	
IVDD	Current at -15 dBm output power		9		mA	
IVDD	Current at -5 dBm output power		10		mA	
IVDD	Current at 0 dBm output power		14		mA	
IVDD	Current at 5 dBm output power		25		mA	
	Receiver		•	•	•	-
IVDD	Current (2000 kbps) [3]		23		mA	

v0.5

•

IVDD	Current (1000 kbps)	21	mA	
Max Input	1 E-3 BER	10	dBm	
RXSENS	1 E-3 BER sensitivity (2000 kbps) [3]	-88	dBm	
RXSENS	1 E-3 BER sensitivity (1000 kbps)	-93	dBm	
C/ICO	Co-channel C/I (2000kbps) [3]	8	dB	Accordin
C/I1ST	ACS C/I 2MHz (2000kbps) [3]	-8	dB	g to ETSI
C/I2ND	ACS C/I 4MHz (2000kbps) [3]	-17	dB	EN 300
C/I3RD	ACS C/I 6MHz (2000kbps) [3]	-26	dB	440-1
C/ICO	Co-channel C/I (1000 kbps) [2]	5	dB	V1.3.1,
C/I1ST	ACS C/I 1MHz (1000 kbps) [2]	-8	dB	CW
C/I2ND	ACS C/I 2MHz (1000 kbps) [2]	-17	dB	interferen
C/I3RD	ACS C/I 3MHz (1000 kbps) [2]	-26	dB	ce

Note:

1. All tests are taken on 300 kHz deviation at 1 Mbps data rate or 700 kHz deviation at 2 Mbps data rate with FSK modulation and demodulation

- 2. Input signal -60 dBm
- 3. Objective specification

Figure 11 BK2411 Typical Application Schematic

Note: Value of crystal load capacitors C15 and C16 may be varied with supplier of 16 MHz crystal. The supplier of 16 MHz crystal in figure above is Epson. BK2411 internal two crystal load capacitance is 9 pF each.

PCB layout examples

A double-sided FR-4 board of 1mm thickness is used.

Figure 12 BK2411 Typical Application Schematic Top Silk Screen

Figure 13 BK2411 Typical Application Schematic Top Layer

Figure 14 BK2411 Typical Application Schematic Bottom Layer

9 Package information

BK2411 uses the QFN20 4x4 package, with matt tin plating.

Parameter	Min	Тур	Max	Unit
A	0.70	0.75	0.80	mm
A1	0.00	-	0.05	mm
A3		0.20 REF		mm
D	3.95	4.00	4.05	mm
E	3.95	4.00	4.05	mm
В	0.18	0.23	0.30	mm
	0.30	0.40	0.50	mm
D2	2.55	2.70	2.80	mm
E2	2.55	2.70	2.80	mm
E		0.50 REF		mm

Table 5	QFN4*4	20	Pin	Package	dimensions

BK2412 uses the QFN24 4x4 package, with matt tin plating.

Figure 16 QFN4*4 24 Pin Package diagram

Parameter	Min	Тур	Max	Unit
А	0.70	0.75	0.80	mm
A1	0.00		0.05	mm
A3		mm		
D	3.95	4.00	4.05	mm
E	3.95	4.00	4.05	mm
b	0.20	0.25	0.30	mm
L	0.35	0.40	0.45	mm
D2	2.30	2.45	2.55	mm
E2	2.30	2.45	2.55	mm
е		0.50 REF		mm

	1000	
Table 6 QFN4*4 24 P	in Package	dimensions

10 Order information

Part number	Package	Packing	MOQ (ea)
BK2411QA	QFN	Tube	10k
BK2411QB	QFN	Tape Reel	10k
BK2411QC	QFN	Tray	6k
BK2411WD	Die	Wafer	TBD
BK2411ME	Module	-	1

Table 7 BK2411 order information

Table 8 BK2412 order information

			ACTES .
Part number	Package	Packing	MOQ (ea)
BK2412QA	QFN	Tube	10k
BK2412QB	QFN	Tape Reel	10k
BK2412QC	QFN	Tray	6k
BK2412WD	Die	Wafer	TBD
BK2412ME	Module		1

Remark: MOQ: Minimum Order Quantity

© 2008 Beken Corporation Proprietary and Confidential